精英家教网 > 高中数学 > 题目详情
13.函数f(x)=lnx,g(x)=x2
(1)求函数h(x)=f(x)-x+1的最大值;
(2)对于任意x1,x2∈(0,+∞),且x2<x1,是否存在实数m,使mg(x2)-mg(x1)>x1f(x1)-x2f(x2)恒成立,若存在求出m的范围,若不存在,说明理由;
(3)若正项数列{an}满足${a_1}=\frac{1}{2},\frac{1}{{{a_{n+1}}}}=\frac{{(1+{a_n}){a_n}}}{{2g({a_n})}}$,且数列{an}的前n项和为Sn,试判断$2{e^{S_n}}$与2n+1的大小,并加以证明.

分析 (1)求出函数的导数,根据函数的单调性求出函数的最大值即可;
(2)问题转化为$2m≤-\frac{1+lnx}{x}$,记$t(x)=-\frac{1+lnx}{x}$,根据函数的单调性求出m的范围即可;
(3)求出$\frac{1}{{{a_{n+1}}}}-1=\frac{1}{2}•(\frac{1}{a_n}-1)$,结合x-1>lnx,得到x>ln(x+1),分别表示出sn,an,从而判断出结论.

解答 解:(1)h(x)=lnx-x+1,
则$h'(x)=\frac{1}{x}-1=\frac{1-x}{x}$,(1分)
所以x∈(1,+∞)函数单调递减,x∈(0,1)函数单调递增.  (2分)
从而h(x)|max=h(1)=0(3分)
(2)若mg(x2)-mg(x1)>x1f(x1)-x2f(x2)恒成立,
则mg(x2)+x2f(x2)>x1f(x1)+mg(x1),(4分)
设函数φ(x)=mg(x)+xf(x)=mx2+xlnx,又0<x2<x1
则只需函数φ(x)在(0,+∞)上为单调递减函数,
即φ'(x)=2mx+1+lnx≤0在(0,+∞)上恒成立,
则$2m≤-\frac{1+lnx}{x}$,(5分)
记$t(x)=-\frac{1+lnx}{x}$,则$t'(x)=\frac{lnx}{x^2}$,
从而t(x)在(0,1]上单调递减,在(1,+∞)单调递增,
故t(x)|min=t(1)=-1,(6分)
则存在$m≤-\frac{1}{2}$,使得不等式恒成立. (7分)
(3)由$\frac{1}{{{a_{n+1}}}}=\frac{{(1+{a_n}){a_n}}}{{2g({a_n})}}=\frac{{(1+{a_n}){a_n}}}{2a_n^2}=\frac{1}{2}•\frac{1}{a_n}+\frac{1}{2}$.
即$\frac{1}{{{a_{n+1}}}}-1=\frac{1}{2}•(\frac{1}{a_n}-1)$,
由${a_1}=\frac{1}{2}$,得$\frac{1}{a_n}-1=\frac{1}{2^{n-1}}⇒{a_n}=\frac{{{2^{n-1}}}}{{1+{2^{n-1}}}}$,(9分)
因为an∈(0,1),由(1)知x∈(0,+∞)时,x-1>lnx⇒x>ln(x+1),
故${a_n}>ln({a_n}+1)=ln\frac{{{2^n}+1}}{{1+{2^{n-1}}}}=ln({2^n}+1)-ln({2^{n-1}}+1)$,(10分)$\begin{array}{l}{S_n}={a_1}+{a_2}+…+{a_n}>[{ln({2^1}+1)-ln({2^0}+1)}]+[{ln({2^2}+1)-ln({2^1}+1)}]+…[{ln({2^n}+1)-ln({2^{n-1}}+1)}]\\=ln({2^n}+1)-ln({2^0}+1)=ln\frac{{{2^n}+1}}{2}\end{array}$
即$2{e^{S_n}}>{2^n}+1$. (12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用、函数恒成立问题以及不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.“数列{an}为等比数列”是“an=3n(n∈N*)的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.刚刚结束的奥运会女排决赛,中国队3:1战胜塞尔维亚队,勇夺冠军,这场比赛吸引了大量观众进入球迷吧看现场直播,不少是女球迷,根据某体育球迷社区统计,在“球色伊人”球迷吧,共有40名球迷观看,其中20名女球迷;在“铁汉柔情”球迷吧,共有30名球迷观看,其中10名是女球迷.
(Ⅰ)从两个球迷吧当中所有的球迷中按分层抽样方法抽取7个球迷做兴趣咨询.
①在“球色伊人”球迷吧男球迷中抽取多少个?
②若从7个球迷中抽取两个球迷进行咨询,求这两个球迷恰来自于不同球迷吧且均属女球迷的概率;
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)根据以上数据,能否有85%的把握认为男球迷或女球迷进球迷吧观看比赛的动机与球迷吧取名有关?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对函数x∈R,函数f(x)满足:f(x+1)=$\sqrt{f(x)-f^2(x)}$+$\frac{1}{2}$,an=f2(n)-f(n),数列{an}的前15项和为$-\frac{31}{16}$,则f(1)+f(2)+…+f(1000)的值为$\frac{575+125\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax3+x2(a∈R)在x=-$\frac{4}{3}$处取得极值.
(1)确定a的值;
(2)讨论函数g(x)=f(x)•ex的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x$
(1)求函数的单调递增区间;
(2)在$△ABC中,f(A)=1,\overrightarrow{AB}•\overrightarrow{AC}=4,BC=2\sqrt{3}$,求边AB,AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.
(1)分别求A∩B,(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-ax-1.
(1)求函数f(x)的单调区间;
(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,依此规律,若$\sqrt{8+\frac{b}{a}}$=8$\sqrt{\frac{b}{a}}$,则a、b的值分别是8,63.

查看答案和解析>>

同步练习册答案