分析 (1)利用二倍角公式以及两角和与差的三角函数化简函数的表达式,然后求出函数单调区间.
(2)利用(1)中的函数关系式求得A=$\frac{π}{3}$,再由余弦定理可求出AB的值.
解答 解:(1)f(x)=$\sqrt{3}$sinxcosx+cos2x=$\frac{\sqrt{3}}{2}$sin2x+$\frac{cos2x}{2}$+$\frac{1}{2}$=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$⇒kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$(k∈Z).
所以函$f(x)=\sqrt{3}sinxcosx+{cos^2}x$的单调递增区间:[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(2)因为f(A)=1,
所以sin(2A+$\frac{π}{6}$)+$\frac{1}{2}$=1,
所以sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
所以2A+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或,2A+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,k∈Z,
所以A=kπ或A=kπ+$\frac{π}{3}$.
因为在三角形ABC中,所以A=$\frac{π}{3}$.
由$\overrightarrow{AB}$•$\overrightarrow{AC}$=4得到:|AB|•|AC|cosA=4.即|AB|•|AC|cos$\frac{π}{3}$=4.
故|AB|•|AC|=8①
又由余弦定理得到:BC2=AB2+AC2-2AB•ACcos$\frac{π}{3}$,即(2$\sqrt{3}$)2=AB2+AC2-8,
故AB2+AC2=20.②
联立①②解得AB=2,AC=4或AB=4,AC=2.
点评 此题考查了正弦函数的图象,三角函数中的恒等变换应用,涉及的知识有:平面向量的数量积运算,余弦定理,以及诱导公式的运用,熟练掌握定理及法则是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 0° | B. | 60° | C. | 0°或60° | D. | 60°或90° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com