3£®ÒÑÖª$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$£¬$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$£¬$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$£¬¡­£¬ÒÀ´Ë¹æÂÉ£¬Èô$\sqrt{8+\frac{b}{a}}$=8$\sqrt{\frac{b}{a}}$£¬Ôòa¡¢bµÄÖµ·Ö±ðÊÇ8£¬63£®

·ÖÎö ×Ðϸ¹Û²ìÒÑÖªµÈʽµÄÊý×Ö¿É·¢ÏÖ£º$\sqrt{n+\frac{n}{{n}^{2}-1}}$=n$\sqrt{\frac{n}{{n}^{2}-1}}$£¬¸ù¾Ý´Ë¹æÂɽâÌâ¼´¿É

½â´ð ½â£ºÓÉ$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$£¬
$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$£¬
$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$£¬
¡­£¬
ÒÀ´Ë¹æÂÉ$\sqrt{n+\frac{n}{{n}^{2}-1}}$=n$\sqrt{\frac{n}{{n}^{2}-1}}$
¹Êµ±n=8ʱ£¬b=8£¬a=28-1=63£¬
¹Ê´ð°¸Îª£º8£¬63

µãÆÀ ±¾ÌâÊÇÒ»µÀÕÒ¹æÂɵÄÌâÄ¿£¬ÒªÇóѧÉúͨ¹ý¹Û²ì£¬·ÖÎö¡¢¹éÄɲ¢·¢ÏÖÆäÖеĹæÂÉ£¬²¢Ó¦Ó÷¢ÏֵĹæÂɽâ¾öÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®º¯Êýf£¨x£©=lnx£¬g£¨x£©=x2£®
£¨1£©Çóº¯Êýh£¨x£©=f£¨x£©-x+1µÄ×î´óÖµ£»
£¨2£©¶ÔÓÚÈÎÒâx1£¬x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx2£¼x1£¬ÊÇ·ñ´æÔÚʵÊým£¬Ê¹mg£¨x2£©-mg£¨x1£©£¾x1f£¨x1£©-x2f£¨x2£©ºã³ÉÁ¢£¬Èô´æÔÚÇó³ömµÄ·¶Î§£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©ÈôÕýÏîÊýÁÐ{an}Âú×ã${a_1}=\frac{1}{2}£¬\frac{1}{{{a_{n+1}}}}=\frac{{£¨1+{a_n}£©{a_n}}}{{2g£¨{a_n}£©}}$£¬ÇÒÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÊÔÅжÏ$2{e^{S_n}}$Óë2n+1µÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Éèf£¨3x-4£©=22x-1+1£¬Ôòf£¨-1£©=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Éè$\overrightarrow{a}$±íʾÏò¶«×ß10km£¬$\overrightarrow{b}$±íʾÏò±±×ß10$\sqrt{3}$km£¬Ôò$\overrightarrow{a}-\overrightarrow{b}$±íʾ£¨¡¡¡¡£©
A£®ÏòÄÏÆ«Î÷30¡ã×ß20kmB£®Ïò±±Æ«Î÷30¡ã×ß20km
C£®ÏòÄÏÆ«¶«30¡ã×ß20kmD£®Ïò±±Æ«¶«30¡ã×ß20km

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦ÈΪ120¡ã£¬ÇÒ|$\overrightarrow{a}$|=4£¬|$\overrightarrow{b}$|=2£¬Çó£º
£¨1£©$\overrightarrow{a}$•$\overrightarrow{b}$£»  
£¨2£©£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©•£¨$\overrightarrow{a}$-2$\overrightarrow{b}$£©£» 
£¨3£©|$\overrightarrow{a}$+$\overrightarrow{b}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Éè{an}ÊǵȲîÊýÁУ¬{bn}ÊǸ÷ÏΪÕýÊýµÄµÈ±ÈÊýÁУ¬ÇÒa1=b1=1£¬a3+b5=21£¬a5+b3=13£¬
£¨¢ñ£©Çó{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©Çó{$\frac{1}{{a}_{n}{a}_{n+1}}$}µÄǰnÏîºÍ£®
£¨¢ó£©Çó{anbn}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos£¨¦È+$\frac{¦Ð}{4}$£©£®ÔòÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-$\frac{\sqrt{2}}{2}$£©2+£¨y+$\frac{\sqrt{2}}{2}$£©2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êýf£¨x£©=1-cos£¨$\frac{¦Ð}{2}$-x£©-cos2xµÄ×î´óֵΪ3£¬×îСֵΪ-$\frac{1}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔĶÁÏÂÁÐÓйعâÏßµÄÈëÉäÓë·´ÉäµÄÁ½¸öÊÂʵÏÖÏó£¬ÏÖÏó£¨1£©£º¹âÏß¾­Æ½Ãæ¾µ·´ÉäÂú×ãÈëÉä½ÇiÓë·´Éä½ÇrÏàµÈ£¨Èçͼ1£©£»ÏÖÏó£¨2£©£º¹âÏß´ÓÍÖÔ²µÄÒ»¸ö½¹µã³ö·¢¾­ÍÖÔ²·´Éäºóͨ¹ýÁíÒ»¸ö½¹µã£¨Èçͼ2£©£®ÊÔ½áºÏÉÏÊöÊÂʵÏÖÏóÍê³ÉÏÂÁÐÎÊÌ⣺
£¨1£©ÓÐÒ»ÍÖÔ²ÐĮ́Çò×À£¬³¤Ö᳤Ϊ2a£¬¶ÌÖ᳤Ϊ2b£®½«Ò»·ÅÖÃÓÚ½¹µã´¦µÄ×ÀÇò»÷³ö£¬¾­¹ýÇò×À±ßÔµµÄ·´É䣨¼ÙÉèÇòµÄ·´ÉäÍêÈ«·ûºÏÏÖÏó£¨2£©£©ºóµÚÒ»´Î·µ»Øµ½¸Ã½¹µãʱËù¾­¹ýµÄ·³Ì¼ÇΪS£¬ÇóSµÄÖµ£¨ÓÃa£¬b±íʾ£©£»
£¨2£©½áÂÛ£ºÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1ÉÏÈÎÒ»µãP£¨x0£¬y0£©´¦µÄÇÐÏßlµÄ·½³ÌΪ$\frac{{{x_0}x}}{a^2}$+$\frac{{{y_0}y}}{b^2}$=1£®¼ÇÍÖÔ²CµÄ·½³ÌΪC£º$\frac{x^2}{4}$+y2=1£®
¢Ù¹ýÍÖÔ²CµÄÓÒ×¼ÏßÉÏÈÎÒ»µãMÏòÍÖÔ²CÒýÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£¬ÇóÖ¤£ºÖ±ÏßlABºã¹ýÒ»¶¨µã£»
¢ÚÉèµãP£¨x0£¬y0£©ÎªÍÖÔ²CÉÏλÓÚµÚÒ»ÏóÏÞÄڵ͝µã£¬F1£¬F2ΪÍÖÔ²CµÄ×óÓÒ½¹µã£¬µãIΪ¡÷PF1F2µÄÄÚÐÄ£¬Ö±ÏßPIÓëxÖáÏཻÓÚµãN£¬ÇóµãNºá×ø±êµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸