精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ为120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;  
(2)($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$); 
(3)|$\overrightarrow{a}$+$\overrightarrow{b}$|.

分析 (1)利用数量积的定义进行计算;
(2)利用数量积的运算法则展开计算;
(3)先计算($\overrightarrow{a}+\overrightarrow{b}$)2,再开方即可.

解答 解:(1)$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cosθ=4×2×cos120°=-4.
(2)($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=16+4-8=12.
(3)|$\overrightarrow{a}+\overrightarrow{b}$|2=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow{b}$+$\overrightarrow{b}$2=16-8+4=12,
∴|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{12}$=2$\sqrt{3}$.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax3+x2(a∈R)在x=-$\frac{4}{3}$处取得极值.
(1)确定a的值;
(2)讨论函数g(x)=f(x)•ex的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设集合A={x|y=$\sqrt{{x^2}-4x+3}$},B={y|y=x+$\frac{m}{x}$(m>0),x∈∁RA},若2$\sqrt{m}$∈B,则m取值范围是(1,9).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等差数列{an}中,
(1)已知S8=48,S12=168,求a1和d;
(2)已知a6=10,S5=5,求a8和S8
(3)已知a3+a15=40,求S17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,在区间[0,$\frac{π}{2}$]上为减函数的是(  )
A.y=cos xB.y=sin xC.y=tan xD.y=sin(x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,依此规律,若$\sqrt{8+\frac{b}{a}}$=8$\sqrt{\frac{b}{a}}$,则a、b的值分别是8,63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设关于x,y的不等式组$\left\{\begin{array}{l}{2x-y+1>0}\\{x-m<0}\\{y+m>0}\end{array}\right.$表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,则m的取值范围是(  )
A.(-∞,3)B.($\frac{2}{3}$,+∞)C.(2,+∞)D.[$\frac{2}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\sqrt{1-lg(x+2)}$的定义域为(-2,8].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题:“?x∈R,x2-x-1<0”的否定是?x∈R,x2-x-1≥0.

查看答案和解析>>

同步练习册答案