| A. | (-∞,3) | B. | ($\frac{2}{3}$,+∞) | C. | (2,+∞) | D. | [$\frac{2}{3}$,2] |
分析 作出不等式组对应的平面区域,要使平面区域内存在点点P(x0,y0)满足x0-2y0=2,则平面区域内必存在一个点在直线x-2y=2的下方,由图象可得m的取值范围.
解答 解:作出不等式组$\left\{\begin{array}{l}{2x-y+1>0}\\{x-m<0}\\{y+m>0}\end{array}\right.$对应的平面如图:交点C的坐标为(m,-m),
直线x-2y=2的斜率为$\frac{1}{2}$,
斜截式方程为y=$\frac{1}{2}$x-1,
要使平面区域内存在点P(x0,y0)满足x0-2y0=2,
则点C(m,-m)必在直线x-2y=2的下方,
即-m<$\frac{1}{2}$m-1,解得m>$\frac{2}{3}$.
故m的取值范围是:($\frac{2}{3}$,+∞).
故选:B.
点评 本题主要考查线性规划的基本应用,利用数形结合是解决本题的关键,综合性较强.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com