精英家教网 > 高中数学 > 题目详情
15.以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系中,曲线C的极坐标方程为ρ=2cos(θ+$\frac{π}{4}$).则曲线C的直角坐标方程为(x-$\frac{\sqrt{2}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=1.

分析 将极坐标方程为ρ=2cos(θ+$\frac{π}{4}$),先利用三角函数的和角公式展开,再化为一般方程即可.

解答 解:∵圆的极坐标方程为ρ=2cos(θ+$\frac{π}{4}$),即ρ=$\sqrt{2}$cosθ-$\sqrt{2}$sinθ,
∴x=ρcosθ,y=ρsinθ,消去p和θ得,
∴(x-$\frac{\sqrt{2}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=1,
故答案为:(x-$\frac{\sqrt{2}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=1.

点评 本题主要考查圆的极坐标方程、参数方程与普通方程的互化,要求学生能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.
(1)分别求A∩B,(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等差数列{an}中,
(1)已知S8=48,S12=168,求a1和d;
(2)已知a6=10,S5=5,求a8和S8
(3)已知a3+a15=40,求S17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,依此规律,若$\sqrt{8+\frac{b}{a}}$=8$\sqrt{\frac{b}{a}}$,则a、b的值分别是8,63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设关于x,y的不等式组$\left\{\begin{array}{l}{2x-y+1>0}\\{x-m<0}\\{y+m>0}\end{array}\right.$表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,则m的取值范围是(  )
A.(-∞,3)B.($\frac{2}{3}$,+∞)C.(2,+∞)D.[$\frac{2}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x∈{2,3,7},y∈{-31,-24,4},则xy可表示不同的值的个数是(  )
A.1+1=2B.1+1+1=3C.2×3=6D.3×3=9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\sqrt{1-lg(x+2)}$的定义域为(-2,8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB是⊙O的直径,C,D是⊙O上的点,AD是∠BAC的平分线,过点D作DE⊥AC,交AC的延长线于点E.
(1)求证:DE2=EC•EA;
(2)过D点作DF⊥AB,垂足为F,求证:$\frac{AF}{AE}$=$\frac{CE}{FB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个几何体的三视图如图所示,求此几何体的体积.

查看答案和解析>>

同步练习册答案