精英家教网 > 高中数学 > 题目详情
4.如图,AB是⊙O的直径,C,D是⊙O上的点,AD是∠BAC的平分线,过点D作DE⊥AC,交AC的延长线于点E.
(1)求证:DE2=EC•EA;
(2)过D点作DF⊥AB,垂足为F,求证:$\frac{AF}{AE}$=$\frac{CE}{FB}$.

分析 (1)根据切线定理和割线定理证明即可;(2)证出DE=DF,结合(1),从而证出结论.

解答 解:(1)连接OD,∵OA=OD,∴∠ODA=∠OAD.
∵AD是∠BAC的平分线,∴∠DAC=∠OAD,
∴∠ODA=∠DAC,∴OD∥AE.
∵AE⊥ED,∴OD⊥ED,
∴ED是圆O的切线,
由切割线定理得DE2=EC•EA.

(2)∵AD平分∠EAB,DF⊥AB,DE⊥AE,
∴DE=DF.
由(1)知DE2=EC•EA,
又△ADB为直角三角形,且DF⊥AB,
∴DF2=AF•FB,
∴AF•FB=EC•EA,
即$\frac{AF}{AE}=\frac{CE}{FB}$.

点评 本题考查了切割线定理,考查圆的有关性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设f(3x-4)=22x-1+1,则f(-1)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系中,曲线C的极坐标方程为ρ=2cos(θ+$\frac{π}{4}$).则曲线C的直角坐标方程为(x-$\frac{\sqrt{2}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=1-cos($\frac{π}{2}$-x)-cos2x的最大值为3,最小值为-$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足$\left\{\begin{array}{l}x≤1\\ y≥\frac{2}{3}\\ 2x-y≥0\end{array}\right.$,则目标函数z=x+y的最小值为(  )
A.$\frac{1}{2}$B.1C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛掷一枚质地均匀的硬币,出现正面向上和反面向上的概率都为$\frac{1}{2}$,构造数列{an},使an=$\left\{\begin{array}{l}{1,第n次正面向上}\\{-1,第n次把反面向上}\end{array}\right.$,记Sn=a1+a2+…+an,则S2≠0且S8=2的概率为(  )
A.$\frac{43}{128}$B.$\frac{43}{64}$C.$\frac{13}{128}$D.$\frac{13}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1)对于函数f(x),若在定义域内存在实数x满足f(-x)=-f(x)则称f(x)为局部函数,已知二次函数f(x)=ax2+2x-4a(a∈R,a≠0)是定义域在R上的局部函数,则满足f(-x)=-f(x)的x值是±2
(2)若直角坐标平面内两点A、B满足条件:点A、B都在f(x)的图象上;点A、B关于原点对称,则对称点(A、B)对是函数的一个姊妹点对点对(A、B)与(B、A)可看做一个姊妹点对.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{2}{{e}^{x}},x≥0}\end{array}\right.$则f(x)的姊妹点对个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.阅读下列有关光线的入射与反射的两个事实现象,现象(1):光线经平面镜反射满足入射角i与反射角r相等(如图1);现象(2):光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图2).试结合上述事实现象完成下列问题:
(1)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出,经过球桌边缘的反射(假设球的反射完全符合现象(2))后第一次返回到该焦点时所经过的路程记为S,求S的值(用a,b表示);
(2)结论:椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1上任一点P(x0,y0)处的切线l的方程为$\frac{{{x_0}x}}{a^2}$+$\frac{{{y_0}y}}{b^2}$=1.记椭圆C的方程为C:$\frac{x^2}{4}$+y2=1.
①过椭圆C的右准线上任一点M向椭圆C引切线,切点分别为A,B,求证:直线lAB恒过一定点;
②设点P(x0,y0)为椭圆C上位于第一象限内的动点,F1,F2为椭圆C的左右焦点,点I为△PF1F2的内心,直线PI与x轴相交于点N,求点N横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\frac{(1-i)^{2}}{z}$=1+i(i为虚数单位),则复数z在复平面内的对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案