精英家教网 > 高中数学 > 题目详情
7.函数y=$\sqrt{1-lg(x+2)}$的定义域为(-2,8].

分析 根据函数y的解析式,列出使解析式有意义的不等式,求出解集即可.

解答 解:∵函数y=$\sqrt{1-lg(x+2)}$,
∴1-lg(x+2)≥0,
即lg(x+2)≤1,
∴0<x+2≤10,
解得-2<x≤8,
∴函数y的定义域为(-2,8].
故答案为:(-2,8].

点评 本题考查了根据函数的解析式求定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.求函数y=$\frac{2x}{1+{x}^{2}}$的极值点和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ为120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;  
(2)($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$); 
(3)|$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系中,曲线C的极坐标方程为ρ=2cos(θ+$\frac{π}{4}$).则曲线C的直角坐标方程为(x-$\frac{\sqrt{2}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.二项式(x+$\frac{1}{2x}$)8的展开式中x4项的系数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=1-cos($\frac{π}{2}$-x)-cos2x的最大值为3,最小值为-$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足$\left\{\begin{array}{l}x≤1\\ y≥\frac{2}{3}\\ 2x-y≥0\end{array}\right.$,则目标函数z=x+y的最小值为(  )
A.$\frac{1}{2}$B.1C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1)对于函数f(x),若在定义域内存在实数x满足f(-x)=-f(x)则称f(x)为局部函数,已知二次函数f(x)=ax2+2x-4a(a∈R,a≠0)是定义域在R上的局部函数,则满足f(-x)=-f(x)的x值是±2
(2)若直角坐标平面内两点A、B满足条件:点A、B都在f(x)的图象上;点A、B关于原点对称,则对称点(A、B)对是函数的一个姊妹点对点对(A、B)与(B、A)可看做一个姊妹点对.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{2}{{e}^{x}},x≥0}\end{array}\right.$则f(x)的姊妹点对个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若不等式|a+2b|+|2b-a|≥|a|(|x-1|+|x-2|),对a、b∈R恒成立且a≠0,求实数x的取值范围.

查看答案和解析>>

同步练习册答案