精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\sqrt{3}$sin2x+cos2x的图象向右平移m(m>0)个单位,所得函数y=g(x)的图象关于直线x=$\frac{π}{2}$对称,当m取最小值时,f(x)-g(x)的最大值是(  )
A.2B.2$\sqrt{2}$C.3D.2$\sqrt{3}$

分析 首先通过三角函数的恒等变换,变换成正弦型函数,进一步利用平移变换,最后根据正弦型函数的对称轴求得结果.

解答 解:f(x)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$).
y=g(x)=2sin(2x-2m+$\frac{π}{6}$).
由于函数y=g(x)的图象关于直线x=$\frac{π}{2}$对称,
所以2×$\frac{π}{2}$-2m+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z.
所以m=-$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z.
取k=0时,得最小的正数m=$\frac{π}{3}$.此时,g(x)=2sin(2x-2m+$\frac{π}{6}$)=2sin(2x-$\frac{2π}{3}$+$\frac{π}{6}$)=2sin(2x-$\frac{π}{2}$)=-2cos2x.
所以f(x)-g(x)=$\sqrt{3}$sin2x+3cos2x=2$\sqrt{3}$sin(2x+$\frac{π}{3}$).
所以f(x)-g(x)的最大值是2$\sqrt{3}$.
故选:D.

点评 本题考查的知识要点:三角函数的恒等变换,函数图象的平移变换问题,及对称轴问题,属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若cos($\frac{π}{2}$+φ)=$\frac{\sqrt{3}}{2}$,则cos($\frac{3π}{2}$-φ)+sin(φ-π)的值为(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知b>1,直线(b2+1)x+ay+2=0与直线x-(b-1)y-1=0互相垂直,则a的最小值等于(  )
A.$2\sqrt{2}-1$B.$2\sqrt{2}+1$C.$2\sqrt{2}+2$D.$2\sqrt{2}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.集合A={x∈R|0<x<3},B={x∈R|-1≤x≤2},则A∪B=(  )
A.{x|-1≤x≤3}B.{x|0≤x≤2}C.{x|-1≤x<3}D.{x|0<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为(  )
A.320B.160C.96D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=xlnx,g(x)=-x2+ax-3
(1)对x∈(0,+∞),不等式2f(x)≥g(x)恒成立,求实数a的取值范围;
(2)证明:对一切x∈(0,+∞),都有$lnx>\frac{1}{e^x}-\frac{2}{ex}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,Sn为其前n项的和,a3+a5=14,则S7的值为(  )
A.49B.44C.53D.56

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=|x2-5x+4|,f(x)的单调增区间为$[1,\frac{5}{2}]$,[4,+∞);若方程f(x)=mx有三个不相等的实根,则m=1,且三个实根的和是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)设x≥1,y≥1,证明x+y+$\frac{1}{xy}$≤$\frac{1}{x}$+$\frac{1}{y}$+xy;
(2)设a,b,c都是正数,求证:$\frac{1}{2a}$+$\frac{1}{2b}$+$\frac{1}{2c}$≥$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$.

查看答案和解析>>

同步练习册答案