精英家教网 > 高中数学 > 题目详情
已知
a
b
为平面向量,
a
=(-
1
2
,-
1
2
),
b
=(
3
2
3
2
),则
a
+
b
a
-
b
的夹角等于(  )
A、
π
3
B、
π
2
C、
3
D、π
考点:平面向量数量积的运算
专题:平面向量及应用
分析:根据向量的加减运算和向量的夹角公式,计算即可.
解答: 解:∵
a
=(-
1
2
,-
1
2
),
b
=(
3
2
3
2
),
a
+
b
=(1,1),
a
-
b
=(-2,-2),
∴cosθ=
(
a
+
b
)(
a
-
b
)
|
a
+
b
|•|
a
-
b
|
=
-4
2
•2
2
=-1,
∵θ∈[0,π]
∴θ=π.
故选:D
点评:本题主要考查两个向量的夹角公式,两个向量数量积公式,求向量的模的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的可导函数f(x)满足f(1+x)=f(1-x),且当x∈(-∞,1)时,(x-1)f′(x)<0.设a=f(0),b=f(
1
2
),c=f(3),则(  )
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

当x、y满足条件|x|+|y|<1时,变量u=
y-3
x
的取值范围是(  )
A、(-
1
3
1
3
B、(-∞,-
1
3
)∪(
1
3
,+∞)
C、(-3,3)
D、(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
2
+cosx的所有正的极小值点从小到大排成的数列为{xn},则x1=(  )
A、
π
3
B、
3
C、
π
6
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(π+x)=f(π-x),若x∈[0,π]时解析为f(x)=cosx,则f(x)>0的解集是(  )(k∈z)
A、(2kπ-
3
2
π,2kπ+
π
2
B、(2kπ-
π
2
,2kπ+
π
2
C、(2kπ,2kπ+π)
D、(2kπ,2kπ+
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的定义域为(a,b),y=f′(x)的图象如图,则函数y=f(x)在开区间(a,b)内取得极小值的点有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos1180°=t,则tan800°等于(  )
A、
1+t2
|t|
B、
1-t2
-t
C、
1+t2
t
D、
1-t2
t

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)=
1
3
x3-2x2+(3+a)x,a∈R.
(Ⅰ)当a=1时,求函数在[-1,1]上的最大值;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

同步练习册答案