精英家教网 > 高中数学 > 题目详情

【题目】已知曲线的方程为,集合,若对于任意的,都存在,使得成立,则称曲线曲线,下列方程所表示的曲线中,是曲线的有______(写出所有曲线的序号)

;②;③;④;⑤.

【答案】①③⑤

【解析】

对于任意,存在,使成立,即成立.表示的是椭圆,根据椭圆关于原点中心对称判断.表示双曲线,可取特殊点 判断.表示抛物线,根据其图象关于x轴对称判断.④根据其图形,可取特殊点判断.⑤由,可得或点,根据过原点一定有一条直线与之垂直来判断.

对于任意,存在,使成立,即.成立.

对于①,∵的图象关于原点中心对称,∴对于任意,存在,使.曲线;

对于②,当为双曲线的顶点时,双曲线上不存在点,使.不是曲线;

对于③,其图象关于x轴对称,的垂线一定与抛物线相交,故曲线;

对于④,当时,曲线上不存在点,使.故④不是曲线;

对于⑤,由可得或点,∴对于任意,存在,使.曲线.

故答案为:①③⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,直线相切,求的值;

(2)若函数内有且只有一个零点,求此时函数的单调区间;

(3)当时,若函数上的最大值和最小值的和为1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放40年来,体育产业蓬勃发展反映了健康中国理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).

(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多亿元以上的概率;

(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;

(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数时取得极值,求实数的值;

(Ⅱ)当时,求零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面 为侧棱上一点.

(Ⅰ)若,求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)在侧棱上是否存在点,使得平面?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设函数.

(1)讨论单调性;

(2)若当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[ 010],(1020],(2030],(3040],(4050]分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.

1)写出频率分布直方图(甲)中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,试比较的大小;(只需写出结论)

2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;

3)设表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线方程为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.

(1)当时,求

(2)证明:存在常数,使得.

(3)为抛物线准线上三点,且,判断的关系.

查看答案和解析>>

同步练习册答案