【题目】已知曲线的方程为,集合,若对于任意的,都存在,使得成立,则称曲线为曲线,下列方程所表示的曲线中,是曲线的有______(写出所有曲线的序号)
①;②;③;④;⑤.
【答案】①③⑤
【解析】
对于任意,存在,使成立,即成立.①表示的是椭圆,根据椭圆关于原点中心对称判断.②表示双曲线,可取特殊点 判断.③表示抛物线,根据其图象关于x轴对称判断.④根据其图形,可取特殊点判断.⑤由,可得或点,根据过原点一定有一条直线与之垂直来判断.
对于任意,存在,使成立,即.成立.
对于①,∵的图象关于原点中心对称,∴对于任意,存在,使.故为曲线;
对于②,当为双曲线的顶点时,双曲线上不存在点,使.故不是曲线;
对于③,其图象关于x轴对称,的垂线一定与抛物线相交,故为曲线;
对于④,当为时,曲线上不存在点,使.故④不是曲线;
对于⑤,由可得或点,∴对于任意,存在,使.故为曲线.
故答案为:①③⑤.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,直线与相切,求的值;
(2)若函数在内有且只有一个零点,求此时函数的单调区间;
(3)当时,若函数在上的最大值和最小值的和为1,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)求已知曲线和曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).
(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多亿元以上的概率;
(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;
(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,, ,,,,为侧棱上一点.
(Ⅰ)若,求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)在侧棱上是否存在点,使得平面?若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:
假设甲、乙两种酸奶独立销售且日销售量相互独立.
(1)写出频率分布直方图(甲)中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(3)设表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线方程,为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.
(1)当时,求;
(2)证明:存在常数,使得.
(3)为抛物线准线上三点,且,判断与的关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com