精英家教网 > 高中数学 > 题目详情

如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC
(1)求证:BE=2AD;
(2)当AC=3,EC=6时,求AD的长.

(1)详见解析    (2)

解析试题分析:(1)连接,因为是圆的内接四边形,所以,能够得到线段的比例关系,由此能够证明
(2)由条件得,设,根据割线定理得,即,由此能求出
(1)连接,因为是圆内接四边形,所以
,即有
又因为,可得
因为的平分线,所以,
从而;            5分

(2)由条件知,设
,根据割线定理得,

解得(舍去),则         10分
考点:与圆有关的比例线段

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是圆内两弦的交点,过延长线上一点作圆的切线为切点,已知.求证:

(Ⅰ)
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(1)求证:AB为圆的直径;
(2)若AC=BD,求证:AB=ED.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,分别为的边上的点,且不与的顶点重合。已知的长为,AC的长为n,的长是关于的方程的两个根。

(1)证明:四点共圆;
(2)若,且,求所在圆的半径。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N.若AC=AB,求证:BN=2AM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,为圆的直径,为垂直的一条弦,垂足为,弦.
(1)求证:四点共圆;
(2)若,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆O与圆O′内切于点T,点P为外圆O上任意一点,PM与内圆O′切于点M.求证:PM∶PT为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,为圆的切线,为切点,的角平分线与和圆分别交于点.

(1)求证(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(几何证明选讲选做题)如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线,则点A到直线的距离AD为      

查看答案和解析>>

同步练习册答案