已知椭圆E:
+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.
(1) 当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;
(2) 若Rt△MAB面积的最大值为
,求a;
(3) 对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.
科目:高中数学 来源: 题型:
已知关于x的方程2x2-(
+1)x+m=0的两根为sinθ和cosθ,且θ∈(0,2π).
(1) 求
的值;
(2) 求m的值;
(3) 求方程的两根及此时θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在平面直角坐标系xOy中,已知椭圆
+
=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1) 设动点P满足PF2-PB2=4,求点P的轨迹;
(2) 设x1=2,x2=
,求点T的坐标;
(3) 设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,椭圆C:
+
=1(a>b>0)的离心率为
,其左焦点到点P(2,1)的距离为
.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.
![]()
(1) 求椭圆C的方程;
(2) 求△ABP面积取最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-
.
(1) 求点P的轨迹方程;
(2) 设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为
r.
(ⅰ) 求圆M的方程;
(ⅱ) 当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C的方程为
+
=1(a>b>0),双曲线
-
=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).
![]()
(1) 当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2) 当
=λ
,求λ的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:
=1(a>b>0)经过点M(-2,-1),离心率为
.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(1) 求椭圆C的方程;
(2) 试判断直线PQ的斜率是否为定值,证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com