20£®ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}{x=8cost}\\{y=3sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³Ì¦Ñ=$\frac{7}{cos¦È-2sin¦È}$£®ÉèPΪÇúÏßC1Éϵĵ㣬µãQµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{3¦Ð}{4}$£©£¬ÔòPQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵÊÇ$\frac{8\sqrt{5}}{5}$£®

·ÖÎö ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$°ÑÇúÏßC2µÄ¼«×ø±ê·½³Ì¦Ñ=$\frac{7}{cos¦È-2sin¦È}$£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£®ÓÉÓÚPΪÇúÏßC1Éϵĵ㣬¿ÉÉèPµã$\left\{\begin{array}{l}{x=8cost}\\{y=3sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬µãQµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{3¦Ð}{4}$£©£¬»¯ÎªÖ±½Ç×ø±êQ£¨-4£¬4£©£®¿ÉµÃPQÖеãM£¨4cost-2£¬$\frac{3sint+4}{2}$£©£¬ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£ºÇúÏßC1£º$\left\{\begin{array}{l}{x=8cost}\\{y=3sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯Îª$\frac{{x}^{2}}{64}+\frac{{y}^{2}}{9}=1$£®
ÇúÏßC2µÄ¼«×ø±ê·½³Ì¦Ñ=$\frac{7}{cos¦È-2sin¦È}$£¬»¯Îªx-2y-7=0£®
¡ßPΪÇúÏßC1Éϵĵ㣬¿ÉÉèPµã$\left\{\begin{array}{l}{x=8cost}\\{y=3sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
µãQµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{3¦Ð}{4}$£©£¬»¯ÎªÖ±½Ç×ø±êQ£¨-4£¬4£©£®
ÔòPQÖеãM£¨4cost-2£¬$\frac{3sint+4}{2}$£©µ½ÇúÏßC2ÉϵĵãµÄ¾àÀëd=$\frac{|4cost-2-£¨3sint+4£©-7|}{\sqrt{5}}$=$\frac{|5sin£¨t+¦Á£©+13|}{\sqrt{5}}$$¡Ý\frac{13-5}{\sqrt{5}}$=$\frac{8\sqrt{5}}{5}$£®µ±sin£¨t+¦Á£©=-1ʱȡµÈºÅ£®
¹Ê´ð°¸Îª£º$\frac{8\sqrt{5}}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢ÍÖÔ²µÄ²ÎÊý·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª$\overrightarrow{a}$=£¨1£¬$\sqrt{3}$£©£¬$\overrightarrow{b}$=£¨-2£¬0£©£¬Ôò|2$\overrightarrow{a}$+3$\overrightarrow{b}$|Ϊ£¨¡¡¡¡£©
A£®2$\sqrt{5}$B£®2$\sqrt{6}$C£®$\sqrt{34}$D£®2$\sqrt{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚͬһֱ½Ç×ø±êϵÖУ¬»­³öº¯Êýy=sinx£¬x¡Ê[0£¬2¦Ð]£»y=cosx£¬x¡Ê[-$\frac{¦Ð}{2}$£¬$\frac{3¦Ð}{2}$]µÄͼÏó£¬Í¨¹ý¹Û²ìÁ½ÌõÇúÏߣ¬Ëµ³öËüÃǵÄÒìͬ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÊÔ»­³öº¯Êýf£¨x£©=|lg|2x-1||ͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÉèÌÝÐÎABCDµÄ¶¥µã×ø±êΪA£¨-1£¬2£©¡¢B£¨3£¬4£©¡¢D£¨2£¬1£©£¬ÇÒAB¡ÎDC£¬AB=2CD£¬ÇóµãCµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÈçͼËùʾ£¬ÒÑÖªA¡¢B¡¢CÈýµã¶¼ÔÚ¡ÑOÉÏ£¬CDÊÇ¡ÑOµÄÇÐÏߣ¬Ö±ÏßABÓëCD½»ÓÚµãD£®
£¨¢ñ£©Èô¡ÏADCµÄƽ·ÖÏß·Ö±ð½»BC¡¢ACÓÚµãE¡¢F£¬ÇóÖ¤£ºCE=CF£»
£¨¢ò£©ÈôCD=6£¬BC=5£¬ÇóÏß¶ÎACµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=ax2+bx+1£¨a£¬bΪʵÊý£¬a¡Ù0£®x¡ÊR£©£®
£¨1£©Èôf£¨-1£©=0£¬ÇÒº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬+¡Þ£©£¬Çóf£¨x£©£»
£¨2£©ÉèF£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬x£¾0}\\{-f£¨x£©£¬x£¼0}\end{array}\right.$£¬mn£¼0£¬m+n£¾0£¬a£¾0£¬ÇÒº¯Êýf£¨x£©ÎªÅ¼º¯Êý£¬Ö¤Ã÷£ºF£¨m£©+F£¨n£©£¾0£»
£¨3£©Éèg£¨x£©=$\frac{lnx+1}{{e}^{x}}$£¬g£¨x£©µÄµ¼º¯ÊýÊÇg¡ä£¨x£©£¬µ±a=b=1ʱ£¬Ö¤Ã÷£º¶ÔÈÎÒâʵÊýx£¾0£¬[f£¨x£©-1]g¡ä£¨x£©£¼1+e-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔÚÈñ½ÇÈý½ÇÐÎABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒtanA=$\frac{\sqrt{3}cb}{{c}^{2}+{b}^{2}-{a}^{2}}$
£¨1£©Çó½ÇAµÄ´óС£»
£¨2£©µ±a=$\sqrt{3}$ʱ£¬Çóc2+b2µÄ×î´óÖµ£¬²¢ÅжϴËʱ¡÷ABCµÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòÊÇ£¨-1£¬0£©£¬Ôòº¯Êýf£¨sinx£©µÄ¶¨ÒåÓòÊÇ£¨2k¦Ð-¦Ð£¬2k¦Ð£©£¬k¡ÊZ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸