精英家教网 > 高中数学 > 题目详情
10.已知$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-2,0),则|2$\overrightarrow{a}$+3$\overrightarrow{b}$|为(  )
A.2$\sqrt{5}$B.2$\sqrt{6}$C.$\sqrt{34}$D.2$\sqrt{7}$

分析 先求出向量$2\overrightarrow{a}+3\overrightarrow{b}$的坐标,根据坐标即可求出|$2\overrightarrow{a}+3\overrightarrow{b}$|.

解答 解:$2\overrightarrow{a}+3\overrightarrow{b}=(-4,2\sqrt{3})$;
∴$|2\overrightarrow{a}+3\overrightarrow{b}|=\sqrt{16+12}=2\sqrt{7}$.
故选:D.

点评 考查向量加法、数乘的坐标运算,以及根据向量坐标求向量长度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若α是第二象限的角,求$\frac{sinα}{\sqrt{1-co{s}^{2}α}}$+$\frac{cosα}{\sqrt{1-si{n}^{2}α}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{16}+\frac{y^2}{12}=1$的右焦点为F,右顶点为A,离心率为e,点P(m,0)(m>4)满足条件$\frac{|FA|}{|AP|}=e$.
(Ⅰ)求m的值;
(Ⅱ)设过点F的直线l与椭圆C相交于M,N两点,记△PMF和△PNF的面积分别为S1,S2,求证:$\frac{S_1}{S_2}=\frac{|PM|}{|PN|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.记函数f(x)的导函数是f′(x),过点(0,-1)作曲线f(x)=(x-1)3+4x•f′(0)的切线,则切线方程是y=-$\frac{13}{4}$x-1或y=-x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一位大学生在暑期社会实践活动中,为了解农村家庭年储蓄y与年收入x的关系,抽取了20个家庭进行调查,根据获得的数据计算得$\sum_{i=1}^{20}{x_i}=100,\sum_{i=1}^{20}{y_i}=40$,并得到家庭年储蓄y对年收入x的线性回归方程为y=bx-1.5,则b=0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知n3(n∈N*)有如下的拆分方式:13=1,23=2+4+2,33=3+6+9+6+3,…,这些通过拆分得到的数可组成右边的数阵:
(1)认真观察数阵,求和:13+23+…+n3
(2)若数列{an}中的每一项都大于0,证明:{an}的通项公式为an=n的充要条件是对任意的n∈N*,都有$\frac{{a}_{1}^{3}+{a}_{2}^{3}+…+{a}_{n}^{3}}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2}$n(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,△ABC是圆O的内接三角形,PA是圆O的切线,A为切点,PB交AC于点E,交圆O于点D,若PE=PA,∠ABC=60°,且PD=2,BD=6,则AC=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若实数a、b满足不等式(a-2)2+(b-1)2≤1,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知曲线C1:$\left\{\begin{array}{l}{x=8cost}\\{y=3sint}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程ρ=$\frac{7}{cosθ-2sinθ}$.设P为曲线C1上的点,点Q的极坐标为(4$\sqrt{2}$,$\frac{3π}{4}$),则PQ中点M到曲线C2上的点的距离的最小值是$\frac{8\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案