精英家教网 > 高中数学 > 题目详情
4.给出下列命题:
①幂函数y=x0的图象为一条直线;
②若幂函数y=xa的图象过原点,则a>0;
③若幂函数y=xa(a<0)是奇函数,则y=xa在其定义域内一定是减函数;
④幂函数y=xa图象不可能出现在第四象限内,
其中真命题的序号为②④.

分析 根据幂函数中指数取值对函数图象的影响,结合幂函数的图象、单调性和定点,对选项进行逐一验证即可.

解答 解:当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},故①不正确;
若幂函数y=xa的图象过原点,则a>0,故②正确;
若幂函数y=xa(a<0)是奇函数,则y=xa在其定义域内不一定是减函数,此时x≠0,故③错误;
幂函数y=xa图象不可能出现在第四象限内,故④正确,
故答案为:②④.

点评 本题考查由幂函数的解析式得到幂函数过的点的坐标的特点、考查幂函数图象和性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数y=tan(2x-$\frac{π}{4}$)的定义域是(  )
A.{x|x≠$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z}B.{x|x≠$\frac{kπ}{2}$+$\frac{3π}{4}$,k∈Z}C.{x|x≠kπ+$\frac{3π}{8}$,k∈Z}D.{x|x≠kπ+$\frac{3π}{4}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,A,H在圆上,过点H作圆的切线BC,AB,AC分别交圆于点M,N.
(1)求证:HB•HM•CN=HC•HN•BM;
(2)若AH为圆的直径,求证:△AMN∽△ACB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.运行两次如图所示的程序框图,若第一次与第二次输入的a的值之和为0,则第一次与第二次输出的a的值之和为(  )
A.0B.1C.0或1D.-1或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知U=R,且A={x|x2>9},B={x|x2-3x-4<0},则∁U(A∪B)=(  )
A.{x|x≤1}B.{x|-3≤x≤-1}C.{x|x<-3或x>-1}D.{x|x≤1或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+$\frac{2}{x}$+ax-a-2(其中a>0).
(1)当a=1时,求f(x)的最小值;
(2)若x∈[1,3]时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A=$\left\{{\left.x\right|\frac{1}{27}<{3^{-x}}<\frac{1}{9}}\right\}$,B={x|log2(x-2)<1},则(∁UA)∩B=[3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司每月最多生产100台警报系统装置,生产x台(x∈N*)的总收入为30x-0.2x2(单位:万元).每月投入的固定成本(包括机械检修、工人工资等)为40万元,此外,每生产一台还需材料成本5万元.在经济学中,常常利用每月利润函数P(x)的边际利润函数MP(x)来研究何时获得最大利润,其中MP(x)=P(x+1)-P(x).
(Ⅰ)求利润函数P(x)及其边际利润函数MP(x);
(Ⅱ)利用边际利润函数MP(x)研究,该公司每月生产多少台警报系统装置,可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为(  )
A.$\frac{32}{3}$B.64C.$\frac{32\sqrt{3}}{3}$D.$\frac{64}{3}$

查看答案和解析>>

同步练习册答案