精英家教网 > 高中数学 > 题目详情
16.已知A=$\left\{{\left.x\right|\frac{1}{27}<{3^{-x}}<\frac{1}{9}}\right\}$,B={x|log2(x-2)<1},则(∁UA)∩B=[3,4).

分析 化简集合A和B,并根据补集的定义求出∁UA,继而求出∁UA∩B.

解答 解:∵$\frac{1}{27}$<3-x<$\frac{1}{9}$,
∴($\frac{1}{3}$)3<($\frac{1}{3}$)x<($\frac{1}{3}$)2
∴2<x<3,
∴A=(2,3),
∴∁UA=(-∞,2]∪[3,+∞)
∵log2(x-2)<1=log22,
∴$\left\{\begin{array}{l}{x-2>0}\\{x-2<2}\end{array}\right.$,
解得2<x<4,
∴B=(2,4),
∴∁UA∩B=[3,4)
故答案为[3,4).

点评 本题考查集合的混合运算,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.一个棱柱共有12个顶点,所有的侧棱长的和为60,则该棱柱的侧棱长为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点到直线x-y+3$\sqrt{2}$=0的距离为5,且椭圆C的一个长轴端点与一个短轴端点间的距离为$\sqrt{10}$.
(1)求椭圆C的标准方程;
(2)给出定点Q($\frac{{6\sqrt{5}}}{5}$,0),对于椭圆C的任意一条过Q的弦AB,$\frac{1}{{{{|{QA}|}^2}}}$+$\frac{1}{{{{|{QB}|}^2}}}$是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出下列命题:
①幂函数y=x0的图象为一条直线;
②若幂函数y=xa的图象过原点,则a>0;
③若幂函数y=xa(a<0)是奇函数,则y=xa在其定义域内一定是减函数;
④幂函数y=xa图象不可能出现在第四象限内,
其中真命题的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC=$\frac{1}{2}$CP=2,D是CP的中点,将△PAD沿AD折起,使得PD⊥面ABCD.

(1)求证:平面PAD⊥平面PCD;
(2)若E是PC的中点,求三棱锥D-PEB的体积.
(3)若E在CP上且二面角E-BD-C所成的角为45°,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={x|2x2+3px+2=0},B={x|2x2+x+q=0},其中p,q为常数,x∈R,若A∩B={$\frac{1}{2}$}时,求p,q的值和A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={1,2,3},B={1,m},A∩B=B,则实数m的值为(  )
A.2B.3C.1或2或3D.2或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式组$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥-2}\\{x-2y≥-2}\end{array}\right.$的解集为D,若(a,b)∈D,则z=2a-3b的最小值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(n)=24+27+210+…+23n+10(n∈N),则f(n)=$\frac{16({8}^{n+3}-1)}{7}$.

查看答案和解析>>

同步练习册答案