精英家教网 > 高中数学 > 题目详情
15.(1)求证:An+1n+1-Ann=n2An-1n-1
(2)求证:2n-Cn12n-1+Cn22n-2+…+(-1)n-1Cnn-1×2+(-1)n=1.

分析 (1)左边=(n+1)$•n{A}_{n-1}^{n-1}$-n${A}_{n-1}^{n-1}$,化简整理即可得出.
(2)利用二项式定理即可得出.

解答 证明:(1)左边=(n+1)$•n{A}_{n-1}^{n-1}$-n${A}_{n-1}^{n-1}$=n2An-1n-1=右边,
∴An+1n+1-Ann=n2An-1n-1
(2)左边=(2-1)n=1=右边,
∴2n-Cn12n-1+Cn22n-2+…+(-1)n-1Cnn-1×2+(-1)n=1.

点评 本题考查了二项式定理、排列组合的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设f(x)=(x2-$\frac{3}{m}$x+$\frac{5}{{m}^{2}}$)emx,其中实数m≠0.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若g(x)=f(x)-$\frac{2}{m}$x-5恰有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),求f(3,0)+f(2,1)+f(1,2)+f(0,3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}(n=1,2,3,…,2016),圆C1:x2+y2-4x-4y=0,圆C2:x2+y2-2anx-2a2017-ny=0,若圆C2平分圆C1的周长,则数列{an}的所有项的和为4032.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z=(i-1)i的虚部为(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某工厂新研发的一种产品的成本价是4元/件,为了对该产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表6组数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
(Ⅰ)若90≤x+y<100,就说产品“定价合理”,现从这6组数据中任意抽取2组数据,2组数据中“定价合理”的个数记为X,求X的数学期望;
(Ⅱ)求y关于x的线性回归方程,并用回归方程预测在今后的销售中,为使工厂获得最大利润,该产品的单价应定为多少元?(利润L=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象在y轴上截距为0,它在y轴右侧的第一个最大值点和最小值点分别为(x0,$\frac{{-1+\sqrt{2}}}{2}$);(x0+π,$\frac{{-1-\sqrt{2}}}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函数g(x)=f(x)+m|x+$\frac{3π}{4}}$|(m>0)在[-$\frac{11π}{12}$,-$\frac{π}{2}$]上存在零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx-$\frac{1-a}{x}$(a为常数)
(1)若曲线y=f(x)在点(2,f(2))处的切线与直线x+y-3=0垂直,求a的值;
(2)若函数g(x)=f(x)-x的在区间(1,+∞)单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{1}{3}$x3+ax2+ax在(-∞,+∞)单调递增的充要条件是(  )
A.0<a<1B.0≤a≤1C.a<0或a>1D.a≤0或a≥1

查看答案和解析>>

同步练习册答案