分析 (1)求出f(x)的导数,由切线方程可得f′(2)=$\frac{a}{2}$+$\frac{1-a}{4}$=1,解方程即可得到a的值;
(2)求出g(x)的导数,并分解因式,由g′(x)=0得x=1或x=a-1,对a讨论,当a>2时,当a=2时,当1<a<2时,当a≤1时,令导数小于0,得减区间.
解答 解:(1)函数f(x)的定义域为(0,+∞),
f′(x)=$\frac{a}{x}$+$\frac{1-a}{{x}^{2}}$,
由曲线y=f(x)在点(2,f(2))处的切线与直线x+y-3=0垂直,
可得f′(2)=$\frac{a}{2}$+$\frac{1-a}{4}$=1,
解得:a=3;
(2)g(x)=f(x)-x=alnx-$\frac{1-a}{x}$-x,
g′(x)=$\frac{a}{x}$-1+$\frac{1-a}{{x}^{2}}$=$\frac{(x-1)(-x+a-1)}{{x}^{2}}$,
由g′(x)=0得x=1或x=a-1,
若a-1>1即a>2时,由g′(x)<0得0<x<1或x>a-1,
则a>2时,g(x)的减区间为(0,1),(a-1,+∞);
与函数在区间(1,+∞)单调递减不符,不合题意;
若a-1=1即a=2时,g′(x)<0,即有g(x)的减区间为(0,+∞),符合题意;
若0<a-1<1即1<a<2时,可得g(x)的减区间为(0,a-1),(1,+∞),符合题意;
若a-1≤0,即a≤1时,g(x)的减区间为(1,+∞),符合题意;
综上,a≤2.
点评 本题考查导数的运用:求切线方程和求单调区间,掌握导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率和分类讨论的思想方法是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com