精英家教网 > 高中数学 > 题目详情
19.设随机变量 ξ~B(n,p),若E(ξ)=2.4,D(ξ)=1.44,则参数n,p的值为6,0.4.

分析 根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于n和p的方程组,解方程组得到要求的两个未知量.

解答 解:∵ξ服从二项分布B~(n,p)
由Eξ=2.4=np,Dξ=1.44=np(1-p),
可得n=6,p=0.4,
故答案为:6,0.4.

点评 本题主要考查二项分布的期望与方差的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1),则$\overrightarrow{a}$•$\overrightarrow{b}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z=(i-1)i的虚部为(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象在y轴上截距为0,它在y轴右侧的第一个最大值点和最小值点分别为(x0,$\frac{{-1+\sqrt{2}}}{2}$);(x0+π,$\frac{{-1-\sqrt{2}}}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函数g(x)=f(x)+m|x+$\frac{3π}{4}}$|(m>0)在[-$\frac{11π}{12}$,-$\frac{π}{2}$]上存在零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.要得到y=sin(2x-$\frac{π}{3}$)的图象,只要将y=sin2x的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx-$\frac{1-a}{x}$(a为常数)
(1)若曲线y=f(x)在点(2,f(2))处的切线与直线x+y-3=0垂直,求a的值;
(2)若函数g(x)=f(x)-x的在区间(1,+∞)单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图:在底面为平行四边形的棱柱ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.则向量$\overrightarrow{BM}$可用$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$表示为$-\frac{1}{2}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow{b}$+$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.f(x)对任意x∈R都有f(x)+f(1-x)=$\frac{1}{2}$.数列{an}满足:an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),则an=$\frac{n+1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个几何体的三视图如图所示,则这个几何体的体积是$\frac{8π}{3}$.

查看答案和解析>>

同步练习册答案