精英家教网 > 高中数学 > 题目详情

(14分)已知
(1)求的定义域和值域;
(2)求.

(1)的值域为[1,+∞) ;
(2)当
 。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的单调区间;
(2)若时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)定义在的函数
(1)对任意的都有
(2)当时,,回答下列问题:
①判断的奇偶性,并说明理由;
②判断的单调性,并说明理由;
③若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
已知函数.
(Ⅰ)当时,求函数的最小值.
(Ⅱ)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)若的一个极值点,求a的值;
(II)求证:当上是增函数;
(III)若对任意的总存在成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调区间;
(2)如果存在,使函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)若定义在上的函数同时满足下列三个条件:
①对任意实数均有成立;
; ③当时,都有成立。
(1)求的值;
(2)求证:上的增函数
(3)求解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知
(1)求函数在[t,t+2](t>0)上的最小值
(2)对一切恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(12分)已知函数在R上为奇函数,.
(I)求实数的值;
(II)指出函数的单调性.(不需要证明)
(III)设对任意,都有;是否存在的值,使最小值为

查看答案和解析>>

同步练习册答案