精英家教网 > 高中数学 > 题目详情

(本题满分13分)
已知函数.
(Ⅰ)当时,求函数的最小值.
(Ⅱ)若对任意恒成立,求实数的取值范围.

(1)在区间上的最小值为;(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,若函数的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数的图象:
(1)写出的解析式  
(2)记,讨论的单调性 
(3)若时,总有成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把)叫闭函数。(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)f(x)为定义在R上的偶函数,但x≥0时,y= f(x)的图像是顶点在P(3,4),且过点A(2,2)的抛物线的一部分。
(1)求函数f(x)在(-∞,0)上的解析式;
(2)求函数f(x)在R上的解析式,并画出函数f(x)的图像;
(3)写出函数f(x)的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知奇函数
(1)求实数m的值,并在给出的直角坐标系中画出的图象;

(2)若函数在区间[-1,-2]上单调递增,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知
(1)求的定义域和值域;
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数(1)判断此函数的奇偶性;(2)判断函数的单调性,并加以证明.(3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题 满分12分)已知是定义在上的偶函数,且时,
(1)求
(2)求函数的表达式;
(3)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知函数
(1)试求的值域;
(2)设,若对恒有 成立,试求实数的取值氛围。

查看答案和解析>>

同步练习册答案