精英家教网 > 高中数学 > 题目详情

(本题满分16分)定义在的函数
(1)对任意的都有
(2)当时,,回答下列问题:
①判断的奇偶性,并说明理由;
②判断的单调性,并说明理由;
③若,求的值.

(1)奇函数 (2)减函数 (3)1

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知函数f(x)= (a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数,且 
(1)判断的奇偶性,并证明;
(2)判断上的单调性,并证明;
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
(1)证明:函数上是减函数,在[,+∞)上是增函数;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把)叫闭函数。(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)f(x)为定义在R上的偶函数,但x≥0时,y= f(x)的图像是顶点在P(3,4),且过点A(2,2)的抛物线的一部分。
(1)求函数f(x)在(-∞,0)上的解析式;
(2)求函数f(x)在R上的解析式,并画出函数f(x)的图像;
(3)写出函数f(x)的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知
(1)求的定义域和值域;
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知函数
(1)试求的值域;
(2)设,若对恒有 成立,试求实数的取值氛围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)求的定义域;
(2)问是否存在实数,当时,的值域为,且 若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案