精英家教网 > 高中数学 > 题目详情
已知f(x)=2+log3x,x∈[,9],则f(x)的最小值为

[     ]

A.-2
B.-3
C.-4
D.0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax-
1x
,g(x)=lnx,(x>0,a∈R是常数).
(1)求曲线y=g(x)在点P(1,g(1))处的切线l.
(2)是否存在常数a,使l也是曲线y=f(x)的一条切线.若存在,求a的值;若不存在,简要说明理由.
(3)设F(x)=f(x)-g(x),讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a(x-1)2
2x+b
,曲线y=f(x)
与直线l:4x+3y-5=0切于点A的横坐标为2,g(x)=2x-
1
3

(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间;
(3)若对于一切x∈[2,5],总存在x1∈[m,n],使f(x)=g(x1)成立,求n-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)如图,已知F(2,0)为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点,AB为椭圆的通径(过焦点且垂直于长轴的弦),线段OF的垂直平分线与椭圆相交于两点C、D,且∠CAD=90°.
(I)求椭圆的方程;
(II)设过点F斜率为k(k≠0)的直线l与椭圆相交于两点P、Q.若存在一定点E(m,0),使得x轴上的任意一点(异于点E、F)到直线EP、EQ的距离相等,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)已知f(x)=lnx,g(x)=
1
3
x3+
1
2
x2+mx+n
,直线l与函数f(x),g(x)的图象都相切于点(1,0).
(1)求直线l的方程及g(x)的解析式;
(2)若h(x)=f(x)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的极大值.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高二下学期期末考试数学卷 题型:解答题

(本小题满分16分)

已知f (x)、g(x)都是定义在R上的函数,如果存在实数mn使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.

f (x)=x2+axg(x)=x+b(R),= 2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.

(1)设,若h (x)为偶函数,求

(2)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;

 

查看答案和解析>>

同步练习册答案