精英家教网 > 高中数学 > 题目详情

【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中BC的中点为MGH的中点为N.

(1)请将字母FGH标记在正方体相应的顶点处(不需说明理由).

(2)判断平面BEG与平面ACH的位置关系并证明你的结论.

【答案】(1) 见解析(2) 见解析

【解析】试题分析:(Ⅰ)直接标出点F,G,H的位置.
(Ⅱ)先证BCHE为平行四边形,可以知道BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.

试题解析:(1)点F,G,H的位置如图所示.

(2)平面BEG∥平面ACH.证明如下:

因为ABCD-EFGH为正方体,

所以BC∥FG,BC=FG,

又FG∥EH,FG=EH,所以BC∥EH,BC=EH

于是BCHE为平行四边形.所以BE∥CH,

又CH平面ACH,BE平面ACH,

所以BE∥平面ACH.同理BG∥平面ACH,

又BE∩BG=B,所以平面BEG∥平面ACH.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017唐山模拟】如图,ABCDA1B1C1D1为正方体,连接BD,AC1,B1D1,CD1,B1C,现有以下几个结论:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是;④CB1与BD为异面直线,其中所有正确结论的序号为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,函数

(1)若 上单调递增,求 的取值范围;

(2)记 上的最大值,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A、B、C所对的边分别是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.

(1)求角B的大小;

(2)若b=,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点P(1,2)引直线,使A(2,3),B(4,-5)到它的距离相等,则这条直线的方程为 (  )

A. 4x+y-6=0

B. x+4y-6=0

C. 2x+3y-7=0或x+4y-6=0

D. 3x+2y-7=0或4x+y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图像与函数h(x)=的图像关于点A(0,1)对称。

(1)求函数f(x)的解析式;

(2)若g(x)=xf(x)+ax,且g(x)在区间(0,4]上为减函数,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门(如图).设计要求彩门的面积为(单位:),高为(单位:)(为常数).彩门的下底固定在广场底面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为,不锈钢支架的长度和记为

1)请将表示成关于的函数

2)问当为何值最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1MNQ分别是棱D1C1A1D1BC的中点P在对角线BD1BP=BD1给出下面四个命题

(1)MN∥平面APC(2)C1Q∥平面APC(3)APM三点共线(4)平面MNQ∥平面APC.正确的序号为 (  )

A. (1)(2) B. (1)(4) C. (2)(3) D. (3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形中,是边长为2的等边三角形,沿折起,使处,且;然后再将沿折起,使处,且面在面的同侧

() 求证:平面

() 求平面与平面所构成的锐二面角的余弦值

查看答案和解析>>

同步练习册答案