精英家教网 > 高中数学 > 题目详情
已知F为双曲线C:x2-
y2
4
=1的一个焦点,则点F到双曲线C的一条渐近线的距离为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的a,b,c,可设F(
5
,0),设双曲线的一条渐近线方程,运用点到直线的距离公式计算即可得到.
解答: 解:双曲线C:x2-
y2
4
=1的a=1,b=2,c=
a2+b2
=
5

则可设F(
5
,0),
设双曲线的一条渐近线方程为y=2x,
则F到渐近线的距离为d=
|2
5
|
1+4
=2,
故答案为:2.
点评:本题考查双曲线的方程和性质,考查渐近线方程的运用,考查点到直线的距离公式,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两平行线l1,l2分别过点P1(1,0)、P2(0,5)
(1)若l1与l2的距离为5,求l1与l2的方程;
(2)设l1与l2之间距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求使满足方程x2+y2+2i=r2+(x-y)i的实数x与y存在的正数r的集合,并在r=
2
时,求满足上述方程的x与y及复数x+yi.

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}是无穷等比数列,则“首项a1>0,公比0<q<1”是“数列{an}存在最大项”的.
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线过点(
3
,2),且它的渐近线方程是y=±2x,则此双曲线的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校在2014年考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示,

(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
①已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙不同时进入第二轮面试的概率;
②若第三组被抽中的学生实力相当,在第二轮面试中获得优秀的概率均为
3
4
,设第三组中被抽中的学生有X名获得优秀,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆γ:
x2
a2
+y2
=1(常数a>1)的左顶点R,点A(a,1),B(-a,1),O为坐标原点;
(1)若P是椭圆γ上任意一点,
OP
=m
OA
+n
OB
,求m2+n2的值;
(2)设Q是椭圆γ上任意一点,S(3a,0),求
QS
QR
的取值范围;
(3)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足kOM•kON=kOA•kOB,试探究△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
-
y2
b2
=1(a>0,b>0),短轴长为2,离心率为
3
2

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若过点P(1,0)的任一直线l交椭圆C于A,B两点(长轴端点除外),证明:存在一定点Q(x0,0),使
QA•
QB
为定值,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3,求曲线在点P(3,9)处的切线方程.

查看答案和解析>>

同步练习册答案