【题目】给出下列命题:
①直线l的方向向量为=(1,﹣1,2),直线m的方向向量=(2,1,﹣),则l与m垂直;
②直线l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),则l⊥α;
③平面α、β的法向量分别为=(0,1,3),=(1,0,2),则α∥β;
④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,则u+t=1.
其中真命题的是 .(把你认为正确命题的序号都填上)
科目:高中数学 来源: 题型:
【题目】如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子里装有标号1、2、3、4的4张形状大小完全相同的标签,先后随机地选取两张标签,根据下列条件,分别求两张标签上的数字为相邻整数的概率.
(1)标签的选取是无放回的;
(2)标签的选取是有放回的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了准确地调查我国某一时期的人口总量、人口分布、民族人口、城乡人口、受教育的程度、迁徙流动、就业状况等多方面的情况,需要用______的方法进行调查.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节期间某超市搞促销活动,当顾客购买商品的金额达到一定数量后可以参加抽奖活动,活动规则为:从装有个黑球, 个红球, 个白球的箱子中(除颜色外,球完全相同)摸球.
(Ⅰ)当顾客购买金额超过元而不超过元时,可从箱子中一次性摸出个小球,每摸出一个黑球奖励元的现金,每摸出一个红球奖励元的现金,每摸出一个白球奖励元的现金,求奖金数不少于元的概率;
(Ⅱ)当购买金额超过元时,可从箱子中摸两次,每次摸出个小球后,放回再摸一次,每摸出一个黑球和白球一样奖励元的现金,每摸出一个红球奖励元的现金,求奖金数小于元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表
组号 | 分组 | 回答正确 的人数 | 回答正确的人数 占本组的频率 |
第1组 | [15,25) | 0.5 | |
第2组 | [25,35) | 18 | |
第3组 | [35,45) | 0.9 | |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列现象:①连续两次抛掷同一骰子,两次都出现2点;②走到十字路口,遇到红灯;③异性电荷相互吸引;④抛一石块,下落.其中是随机现象的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点在原点,左焦点,左顶点,上顶点,的周长为,的面积为.
(I)求椭圆的标准方程;
(II)是否存在与椭圆交于两点的直线使得成立?若存在,求出实数的取值范围,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com