精英家教网 > 高中数学 > 题目详情
16.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两个互相垂直的单位向量,且$\overrightarrow{OA}$=$\frac{1}{4}$$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=$\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$则$\overrightarrow{OA}$在$\overrightarrow{OB}$上的投影为(  )
A.$\frac{{\sqrt{10}}}{4}$B.$\frac{{\sqrt{5}}}{3}$C.$\frac{{3\sqrt{5}}}{10}$D.$\frac{{2\sqrt{2}}}{3}$

分析 把已知代入向量在向量方向上的投影公式,结合向量的数量积运算化简得答案.

解答 解:由题意知,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=0$,又$\overrightarrow{OA}$=$\frac{1}{4}$$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=$\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,
∴$\overrightarrow{OA}$在$\overrightarrow{OB}$上的投影为$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{|\overrightarrow{OB}|}=\frac{(\frac{1}{4}\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})•(\overrightarrow{{e}_{1}}+\frac{1}{2}\overrightarrow{{e}_{2}})}{\sqrt{(\overrightarrow{{e}_{1}}+\frac{1}{2}\overrightarrow{{e}_{2}})^{2}}}$=$\frac{\frac{1}{4}+\frac{1}{2}}{\sqrt{1+\frac{1}{4}}}=\frac{3\sqrt{5}}{10}$.
故选:C.

点评 本题考查平面向量的数量积运算,考查了向量在向量方向上的投影的概念,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.f(α)=$\frac{sin^3(π+α)cos(-α)cos(π-α)}{{tan}^{3}(π+α{)cos}^{3}(-α-π)}$+$\frac{cos(α+3π{)sin}^{2}(α+3π{)cos}^{2}(\frac{3π}{2}+α)}{tan(α+5π)tan(π+α{)cos}^{3}(π+α)}$
(1)化简f(α);
(2)若tanα=2,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(Ⅰ)已知α角的终边经过点(t-2,t 2-1)且cosα≤0,sinα>0,求实数t的取值范围;
(Ⅱ)试作出函数 $f(x)=\frac{sinx}{{|{sinx}|}}$在(-2π,2π)上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,线段AB=8,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕点C旋转后与点B绕点P旋转后重合于点D.设CP=x,△CPD的面积为f(x).则f(x)的定义域为(2,4); f′(x)=0的解是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,该几何体的体积是(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点O(0,0),A(4,0),B(0,3)为矩形的三个顶点,求矩形的两条对角线所在的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个空间几何体的三视图如图所示,则几何体的体积为(  )
A.2B.$\frac{8}{3}$C.3D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},(x≤-1)}\\{sin\frac{π}{2}x,(-1<x<2)}\\{10lo{g}_{4}x,(x≥2)}\end{array}\right.$.
(1)求f(1),f[f(-2)]的值;
(2)若f(a)=10,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,且c=1,∠A=45°,S△ABC=2,则a=(  )
A.5B.25C.$\sqrt{41}$D.$5\sqrt{2}$

查看答案和解析>>

同步练习册答案