精英家教网 > 高中数学 > 题目详情
10.已知抛物线x2=8y的焦点F到双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线的距离为$\frac{4\sqrt{5}}{5}$,点P是抛物线x2=8y上一动点,P到双曲线C的右焦点F2的距离与到直线y=-2的距离之和的最小值为3,则该双曲线的标准方程为$\frac{x^2}{4}$-y2=1.

分析 确定抛物线的焦点坐标,双曲线的渐近线方程,进而可得a=2b,再利用抛物线的定义,结合P到双曲线C的右焦点F2(c,0)的距离与到直线y=-2的距离之和的最小值为3,可得FF2=3,从而可求双曲线的几何量,从而可得结论.

解答 解:抛物线x2=8y的焦点F(0,2),
双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)一条渐近线的方程为bx-ay=0,
由抛物线x2=8y的焦点F到双曲线C的渐近线的距离为$\frac{4\sqrt{5}}{5}$,
可得d=$\frac{2a}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{4\sqrt{5}}{5}$,
即有2b=a,
由P到双曲线C的右焦点F2(c,0)的距离与到直线y=-2的距离之和的最小值为3,
由抛物线的定义可得P到准线的距离即为P到焦点F的距离,
可得|PF2|+|PF|的最小值为3,
连接FF2,可得|FF2|=3,
即c2+4=9,
解得c=$\sqrt{5}$,
由c2=a2+b2,a=2b,
解得a=2,b=1,
则双曲线的方程为$\frac{x^2}{4}$-y2=1.
故答案为:$\frac{x^2}{4}$-y2=1.

点评 本题主要考查了抛物线、双曲线的几何性质,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.sin410°cos145°+sin680°sin(-35°)=$\frac{\sqrt{2}-\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={1,2,3},B={3,4},则A∪B=(  )
A.{1,2}B.{1,2,3,4}C.{1,2,3}D.{1,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设a=($\frac{3}{4}$)0.5,b=($\frac{4}{3}$)0.4,c=log${\;}_{\frac{3}{4}}$(log34),则a,b,c相互之间的大小关系为c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-ax(e为自然对数的底数,a为常数)在点(0,1)处的切线斜率为-1.
(Ⅰ)求a的值及函数f(x)的极值;
(Ⅱ)证明:当x>0时,x2<ex
(Ⅲ)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<cex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的左焦点为F(-1,0),且椭圆上的点到点F的距离最小值为$\sqrt{2}-1$.
(1)求椭圆的方程;
(2)已知经过点F的动直线l与椭圆交于不同的两点A,B,点$M(-\frac{5}{4},0)$,证明:$\overline{MA}•\overline{MB}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{2}{x^2}$+x-2lnx.
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)证明:对一切x∈(0,+∞),都有不等式(x-1)(e-x-x)+2lnx<$\frac{2}{3}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后的图象关于y轴对称,则函数f(x)在[0,$\frac{π}{2}$]上的最小值为(  )
A.0B.-1C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}为等比数列,a1=3,且4a1,2a2,a3成等差数列,则a3+a5等于(  )
A.189B.72C.60D.33

查看答案和解析>>

同步练习册答案