精英家教网 > 高中数学 > 题目详情
9.sin410°cos145°+sin680°sin(-35°)=$\frac{\sqrt{2}-\sqrt{6}}{4}$.

分析 由条件利用诱导公式、两角和差的三角公式,求得要求式子的值.

解答 解:sin410°cos145°+sin680°sin(-35°)=sin50°(-cos35°)+sin(-40°)sin(-35°)
=-sin50°cos35°+sin40°sin35°=-sin50°cos35°+cos50°sin35°
=sin(35°-50°)=-sin15°=-sin(45°-30°)=-(sin45°cos30°-cos45°sin30°)
-($\frac{\sqrt{2}}{2}•\frac{\sqrt{3}}{2}$-$\frac{\sqrt{2}}{2}•\frac{1}{2}$)=$\frac{\sqrt{2}-\sqrt{6}}{4}$,
故答案为:$\frac{\sqrt{2}-\sqrt{6}}{4}$.

点评 本题主要考查诱导公式、两角和差的三角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知两点A(0,2)、B(3,-1),设向量$\overrightarrow a=\overrightarrow{AB}$,$\overrightarrow{b}$=(1,m),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,那么实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知一元二次方程(k+1)x2-2(k+7)x+k-5=0有实根.
(1)求k的取值范围;
(2)当k在取值范围内取最大负整数时,若方程两实根为x1,x2,则$\frac{{x}_{2}}{{x}_{1}-1}$+$\frac{{x}_{1}}{{x}_{2}-1}$的值多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.各项互不相等的等比数列{an}的前n项和为Sn,若S3=3,a1=1,则S6=-$\frac{31}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某企业参加A项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A项目中调出x人参与B项目的售后服务工作,每人每年可以创造利润10(a-$\frac{3x}{500}$)万元(a>0),A项目余下的工人每年创造利润需要提高0.2x%.
(1)若要保证A项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B项目从事售后服务工作?
(2)在(1)的条件下,当从A项目调出的人数不能超过总人数的40%时,才能使得A项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.△ABC中,已知a=6,∠B=60°,若解此三角形时有且只有唯一解,则b的值应满足b=3$\sqrt{3}$或b≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,在单位圆O中,∠AOH=α(0<α<$\frac{π}{2}$),若△AOH的面积记为S1,△BOC的面积记为S2,△AOC的面积为S3,扇形AOC的面积记为S4,则(  )
A.S1=$\frac{1}{2}$sinαB.S2=$\frac{1}{2}$tanαC.S3D.S4=$\frac{1}{2}$cosα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)在区间(0,π)上存在唯一一个x0∈(0,π),使得f(x0)=1,则ω的取值范围为(  )
A.($\frac{1}{2}$,$\frac{11}{6}$]B.[$\frac{1}{2}$,$\frac{11}{6}$)C.($\frac{1}{3}$,$\frac{13}{6}$]D.[$\frac{1}{3}$,$\frac{13}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线x2=8y的焦点F到双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线的距离为$\frac{4\sqrt{5}}{5}$,点P是抛物线x2=8y上一动点,P到双曲线C的右焦点F2的距离与到直线y=-2的距离之和的最小值为3,则该双曲线的标准方程为$\frac{x^2}{4}$-y2=1.

查看答案和解析>>

同步练习册答案