精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)在区间(0,π)上存在唯一一个x0∈(0,π),使得f(x0)=1,则ω的取值范围为(  )
A.($\frac{1}{2}$,$\frac{11}{6}$]B.[$\frac{1}{2}$,$\frac{11}{6}$)C.($\frac{1}{3}$,$\frac{13}{6}$]D.[$\frac{1}{3}$,$\frac{13}{6}$)

分析 由题意利用正弦函数的图象特征,可得$\frac{5π}{6}$<ωπ+$\frac{π}{3}$≤2π+$\frac{π}{6}$,由此求得ω的范围.

解答 解:∵x0∈(0,π),∴ωx0+$\frac{π}{3}$∈($\frac{π}{3}$,ωπ+$\frac{π}{3}$).
由存在唯一一个x0∈(0,π),使得f(x0)=2sin(ωx+$\frac{π}{3}$)=1,可得sin(ω•x0+$\frac{π}{3}$)=$\frac{1}{2}$,
∴$\frac{5π}{6}$<ωπ+$\frac{π}{3}$≤2π+$\frac{π}{6}$,求得$\frac{1}{2}$<ω≤$\frac{11}{6}$,
故选:A.

点评 本题主要考查正弦函数的图象特征,判断$\frac{5π}{6}$<ωπ+$\frac{π}{3}$≤2π+$\frac{π}{6}$,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.求适合下列条件的双曲线的标准方程:
(1)a=2$\sqrt{5}$,过点A(-5,2),焦点在x轴上;
(2)b=1,焦点为(0,±$\sqrt{10}$):
(3)一个焦点为(-5,0),且离心率为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.sin410°cos145°+sin680°sin(-35°)=$\frac{\sqrt{2}-\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.二项式($\frac{x}{3}$+$\frac{3}{x}$)10的展开式中不含x的项是第6项,即252..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知log23=a,log35=b,则lg6=(  )
A.$\frac{1}{1+ab}$B.$\frac{a}{1+ab}$C.$\frac{b}{1+ab}$D.$\frac{a+1}{1+ab}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$=$\overrightarrow{0}$,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角余弦为$\frac{1}{5}$,$\overrightarrow{b}$与$\overrightarrow{c}$的夹角余弦为为-$\frac{1}{3}$,|$\overrightarrow{b}$|=1,则$\overrightarrow{a}$•$\overrightarrow{c}$的值为$\frac{26\sqrt{3}+51}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={1,2,3},B={3,4},则A∪B=(  )
A.{1,2}B.{1,2,3,4}C.{1,2,3}D.{1,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设a=($\frac{3}{4}$)0.5,b=($\frac{4}{3}$)0.4,c=log${\;}_{\frac{3}{4}}$(log34),则a,b,c相互之间的大小关系为c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后的图象关于y轴对称,则函数f(x)在[0,$\frac{π}{2}$]上的最小值为(  )
A.0B.-1C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案