精英家教网 > 高中数学 > 题目详情
已知直线x+ay+2=0与圆锥曲线x2+2y2=2有两个交点A、B,若|AB|=2,则a=
 
考点:椭圆的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:将直线x=-ay-2代入椭圆x2+2y2=2,消去x,运用韦达定理和弦长公式,注意判别式大于0,解方程即可得到a.
解答: 解:将直线x=-ay-2代入椭圆x2+2y2=2,
可得,(a2+2)y2+4ay+2=0,
则△=16a2-8(a2+2)>0,解得,a>
2
或a<-
2

y1+y2=-
4a
a2+2
,y1y2=
2
a2+2

则弦长|AB|=
1+a2
(y1+y2)2-4y1y2

=
1+a2
(-
4a
2+a2
)2-
8
2+a2

=
1+a2
8a2-16
2+a2
=2,
解得,a2=3+
17

即有a=±
3+
17

故答案为:±
3+
17
点评:本题考查直线和椭圆的位置关系:相交,考查弦长公式的运用,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=x2-(m+2)x+m,m∈R.
(1)若tanA、tanB是方程g(x)+3=0的两个实根,且A、B为锐角△ABC的两个内角,求m的取值范围.
(2)对任意实数a,恒有g(-1+cosa)≥0,求m的取值范围;
(3)在(2)的条件下,若函数g(sina)的最大值为8.求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简2
1-sin80°
-
2+2cos80°
=(  )
A、-2sin40°
B、2cos40°
C、cos40°-sin40°
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
π
4
<x<y
4
,且cos(x-y)=
12
13
,sin(x+y)=-
3
5
,求cos2x及sin2y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下命题:
①命题“存在x∈R,x2-x-2≥0”的否定是:“不存在x∈R,x2-x-2<0”;
②线性回归直线
y
=
b
x+
a
恒过样本中心(
.
x
.
y
),且至少过一个样本点.
③已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;
④函数f(x)=e-x-ex的图象的切线的斜率的最大值是-2;
⑤函数f(x)=x 
1
3
-(
1
2
x的零点在区间(
1
3
1
2
)内;
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是A、B、C的对边,且满足
cosB
cosC
=-
b
2
a+c

(1)求角B的值;
(2)若a=1,c=2
2
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,线段AB在平面α内,线段AC⊥α,线段BD⊥AB,线段DD′⊥α,∠DBD′=30°,如果AB=a,AC=BD=b,求C、D间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2-x(x∈R),
(1)求证:函数f(x)是R上的增函数;
(2)若x满足条件2 x2≤(
1
2
x-2,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工程队共有400人,要建造一段3600米的高速公路,工程队若将400人分成两组,甲组完成1000米的软土地带,乙完成1600迷的硬土地带,两组同时施工,当两组全部完成施工,施工结束后,以最后完成施工的一组所需要的时间作为整个工程的工期,据测算,软硬土地带的工程量需要一名工人分别工作50工时和20工时.
(1)如何安排两组的人数,使甲组比乙组先完成施工?
(2)设甲组人数为x人,全部工程的工期为f(x),求f(x)的表达式,并求出定义域.
(3)如何安排两组的人数,使工程工期最短?

查看答案和解析>>

同步练习册答案