精英家教网 > 高中数学 > 题目详情
9.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,则z=|x+2y-3|的最小值为1.

分析 由约束条件作出可行域,令t=x+2y-3,化为直线方程的斜截式,利用线性规划知识求出t的范围,取绝对值得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$作出可行域如图,

令t=x+2y-3,则$y=-\frac{x}{2}+\frac{t+3}{2}$,
由图可知,当直线$y=-\frac{x}{2}+\frac{t+3}{2}$过O时,直线在y轴上的截距最小,t有最小值为-3;
直线$y=-\frac{x}{2}+\frac{t+3}{2}$过A时,直线在y轴上的截距最大,t有最大值为-1.
∴z=|x+2y-3|的最小值为1.
故答案为:1.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知f(x)=$\left\{\begin{array}{l}{f(x-3),x≥9}\\{x+5,x<9}\end{array}\right.$,则f(12)的值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在棱长为2的正方体ABCD一A1B1C1D1中,点E,F,G分别是边AB,BC,AA1上的点,记AE=x,BF=y,A1G=z,
(1)若x=y=z=1,记平面EFG与边CC1的交点为H,求异面直线A1E与DH所成的角;(2)若x+y=2,求证:截面EFG⊥平面BDD1B1
(3)若x=z,且y=1,求三棱锥B1-GEF的体积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sinα-cosα=$\sqrt{2}$,求下列式子的值?
(1)sinαcosα=-$\frac{1}{2}$.
(2)sinα+cosα=0.
(3)sin2α+cos2α=1.
(4)sin3α+cos3α=0.
(5)sin3α-cos3α=$\frac{\sqrt{2}}{2}$.
(6)sin4α+cos4α=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知奇函数y=f(x)的图象关于直线x=-2对称,且f(m)=3,则f(m-4)的值为(  )
A.3B.0C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.当-1≤x≤a(a>-1)时,求函数y=-x(x-a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为了考察高中生的性别与是否喜欢数学课程之间的关系,在我市的某校高中生中随即抽取了100名学生,得到如下联表:
  不喜欢数学课程喜欢数学课程 总计 
 男 45 10 55
 女 30 15 45
 总 75 25100
由表中数据,计算得K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$≈3.03,
附表:
 P(K2≥k0 0.100.05 0.025 
 k0 2.706 3.8415.024
参照附表,则下列结论正确的是(  )
A.有90%以上的把握认为“性别与是否喜欢数学课程有关”
B.有90%以上的把握认为“性别与是否喜欢数学课程没有关”
C.在犯错误的概率不超过1%的前提下,认为“性别与是否喜欢数学课程有关”
D.在犯错误的概率不超过1%的前提下,认为“性别与是否喜欢数学课程没有关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,且一个焦点和短轴的两个端点构成面积为1的等腰直角三角形.
(1)求椭圆的标准方程;
(2)过椭圆C右焦点F作直线交椭圆C于点M,N,又直线OM交直线x=2于点T,$\overrightarrow{OT}$=2$\overrightarrow{OM}$,求线段MN的长;
(3)半径为r的圆Q以椭圆C的右顶点为圆心,若存在直线l:y=kx,使直线l与椭圆C交于A,B两点,与圆Q分别交于G、H两点,点G在线段AB上,且|AG|=|BH|,求圆O的半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若集合A={(x,y)|y=-$\sqrt{9-{x}^{2}}$},B={(x,y)|x+y+m=0},且A∩B≠∅,则实数m的取值范围[-3,3$\sqrt{2}$].

查看答案和解析>>

同步练习册答案