精英家教网 > 高中数学 > 题目详情
2.函数f(x)=$\sqrt{2x-3}$+$\frac{1}{{\sqrt{4-x}}}$的定义域为(  )
A.[${\frac{3}{2}$,4]B.[${\frac{3}{2}$,4)C.[4,+∞)D.(4,+∞)

分析 由题意可知,开偶次根式,被开方数大于等于0,分式中分母不能为0,即可求解.

解答 解:∵f(x)=$\sqrt{2x-3}$+$\frac{1}{{\sqrt{4-x}}}$
∴$\left\{\begin{array}{l}{2x-3≥0}\\{4-x>0}\end{array}\right.$
解得:$\frac{3}{2}$≤x<4.
∴函数f(x)的定义域为[$\frac{3}{2}$,4).
故选:B.

点评 本题考查了求函数定义域的应用问题,解题的关键是列出使函数解析式有意义的不等式组,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.对于函数f(x)=(x2-2x+2)ex-$\frac{e}{3}{x^3}$的下列描述,错误的是(  )
A.无最大值
B.极大值为2
C.极小值为$\frac{2e}{3}$
D.函数g(x)=f(x)-2的图象与x轴只有两个交点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数a+bi与c+di(a,b,c,d∈R)的积是纯虚数的充要条件是(  )
A.ac-bd=0B.ad+bc=0
C.ac-bd≠0且ad+bc=0D.ac-bd=0且ad+bc≠0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义在R上的奇函数f(x)满足f(-x)=f(x+$\frac{3}{2}$),f(2015)=2,则f(-2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正数x,y满足x+y=1,则xy+$\frac{1}{xy}$的取值范围$[\frac{17}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x}{{x}^{2}+1}$.
(1)判断x的奇偶性,并证明;
(2)证明函数f(x)在(1,+∞)为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.分别判断数列{an}是否有极限,并说明理由.
(1)an=$\frac{n+1}{n}$.
(2)an=1+(-$\frac{1}{2}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数($\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i)3(其中i为虚数单位)的值是(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若全集U=R,集合M={x|-2≤x≤2},N={x|0≤x≤3},则M∩(∁UN)=(  )
A.{x|x<0}B.{x|-2≤x<0}C.{x|x>3}D.{x|-2≤x<3}

查看答案和解析>>

同步练习册答案