精英家教网 > 高中数学 > 题目详情
14.分别判断数列{an}是否有极限,并说明理由.
(1)an=$\frac{n+1}{n}$.
(2)an=1+(-$\frac{1}{2}$)n

分析 (1)由an=$\frac{n+1}{n}$=$1+\frac{1}{n}$,可知当n→+∞时,$\frac{1}{n}$→0,得到数列极限为1;
(2)由an=1+(-$\frac{1}{2}$)n=1+$(-1)^{n}•\frac{1}{{2}^{n}}$,可知,当n→+∞时,$(-1)^{n}•\frac{1}{{2}^{n}}$→0,得到数列极限为1.

解答 解:(1)∵an=$\frac{n+1}{n}$=$1+\frac{1}{n}$,
∴$\underset{lim}{n→∞}{a}_{n}=\underset{lim}{n→∞}(1+\frac{1}{n})=1$;
∴数列{$\frac{n+1}{n}$}有极限为1;
(2)∵an=1+(-$\frac{1}{2}$)n=1+$(-1)^{n}•\frac{1}{{2}^{n}}$,
∴$\underset{lim}{n→∞}{a}_{n}=\underset{lim}{n→∞}[1+(-1)^{n}•\frac{1}{{2}^{n}}]$=1.
∴数列{1+(-$\frac{1}{2}$)n}有极限为1.

点评 本题考查数列极限,考查数列极限的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$+lnx,g(x)=$\frac{1}{2}$x2
(1)设h(x)=f(x)+g(x),求曲线y=h(x)在点(1,h(1))处的切线方程;
(2)证明:f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)为定义在R上的偶函数,且f(x+1)=-f(x),当x∈[0,1],f(x)=x2+1
(1)f(x)在(1,2)上增,(2,3)上减           
(2)f(2016)=1
(3)f(x)图象关于x=2k+1(k∈Z)对称
(4)当x∈[3,4]时,f(x)=(x-4)2+1
则正确的个数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\sqrt{2x-3}$+$\frac{1}{{\sqrt{4-x}}}$的定义域为(  )
A.[${\frac{3}{2}$,4]B.[${\frac{3}{2}$,4)C.[4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC.
(Ⅰ) 求角B的大小;
(Ⅱ) 设$\vec m$=(sinA,cos2A),$\vec n$=(4k,1)(k>1),且$\vec m$•$\vec n$的最大值是7,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A={x|x+1≥0},B={y|y2-4>0},全集I=R,则A∩(∁IB)为(  )
A.{x|x≥2或x≤-2}B.{x|x≥-1或x≤2}C.{x|-1≤x≤2}D.{x|-2≤x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{x}^{3}+a{x}^{2}+1,x≥0}\end{array}\right.$,其中a是常数.
(Ⅰ)若曲线y=f(x)在点x=-2和x=2处的切线互相平行,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)探求关于x的方程27f(x)-a3=0的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中正确的个数是(  )
(1)过点(2,3)斜率为4的直线方程是$\frac{y-3}{x-2}$=4;
(2)极点O(0,0)不在曲线ρ=4cosθ上;
(3)对于函数y=f(x),在区间[a,b]上,若f′(x)≥0,则f(x)在[a,b]上为增函数;
(4)对于函数y=f(x),若f′(x0)=0,则x0为其极值点;
(5)命题“若x=2,则x2=4”的否定是“若x≠2,则x2≠4”.
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知光线经过已知直线l1:3x-y+7=0和l2:2x+y+3=0的交点M,且射到x轴上一点N(1,0)后被x轴反射.
(1)求点M关于x轴的对称点P的坐标;
(2)求反射光线所在的直线l3的方程.
(3)求与l3距离为$\sqrt{10}$的直线方程.

查看答案和解析>>

同步练习册答案