分析 (1)由an=$\frac{n+1}{n}$=$1+\frac{1}{n}$,可知当n→+∞时,$\frac{1}{n}$→0,得到数列极限为1;
(2)由an=1+(-$\frac{1}{2}$)n=1+$(-1)^{n}•\frac{1}{{2}^{n}}$,可知,当n→+∞时,$(-1)^{n}•\frac{1}{{2}^{n}}$→0,得到数列极限为1.
解答 解:(1)∵an=$\frac{n+1}{n}$=$1+\frac{1}{n}$,
∴$\underset{lim}{n→∞}{a}_{n}=\underset{lim}{n→∞}(1+\frac{1}{n})=1$;
∴数列{$\frac{n+1}{n}$}有极限为1;
(2)∵an=1+(-$\frac{1}{2}$)n=1+$(-1)^{n}•\frac{1}{{2}^{n}}$,
∴$\underset{lim}{n→∞}{a}_{n}=\underset{lim}{n→∞}[1+(-1)^{n}•\frac{1}{{2}^{n}}]$=1.
∴数列{1+(-$\frac{1}{2}$)n}有极限为1.
点评 本题考查数列极限,考查数列极限的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [${\frac{3}{2}$,4] | B. | [${\frac{3}{2}$,4) | C. | [4,+∞) | D. | (4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥2或x≤-2} | B. | {x|x≥-1或x≤2} | C. | {x|-1≤x≤2} | D. | {x|-2≤x≤-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com