精英家教网 > 高中数学 > 题目详情
19.已知A={x|x+1≥0},B={y|y2-4>0},全集I=R,则A∩(∁IB)为(  )
A.{x|x≥2或x≤-2}B.{x|x≥-1或x≤2}C.{x|-1≤x≤2}D.{x|-2≤x≤-1}

分析 先化简集合A,B,B补集与A的交集确定.

解答 解:∵A={x|x+1≥0}={x|x≥-1},B={y|y2-4>0}={y|y>2或y<-2},
∴∁IB={y|-2≤y≤2},
∴A∩(∁IB)={x|-1≤x≤2}
故选:C.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知点P(2,0),抛物线y2=4x,过P作斜率分别为k1,k2的两条直线交抛物线于A,B,C,D四点,且M,N分别是线段AB,CD的中点.
(Ⅰ)若k1•k2=-1,求△PMN的面积的最小值;
(Ⅱ)若k1+k2=1,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义在R上的奇函数f(x)满足f(-x)=f(x+$\frac{3}{2}$),f(2015)=2,则f(-2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x}{{x}^{2}+1}$.
(1)判断x的奇偶性,并证明;
(2)证明函数f(x)在(1,+∞)为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.分别判断数列{an}是否有极限,并说明理由.
(1)an=$\frac{n+1}{n}$.
(2)an=1+(-$\frac{1}{2}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设直线l过点(-3,0),且与圆x2+y2=1相切,则l的斜率是(  )
A.±$\frac{1}{4}$B.±$\frac{{\sqrt{2}}}{4}$C.±$\frac{1}{3}$D.±$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数($\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i)3(其中i为虚数单位)的值是(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若角α的终边过点P(-1,3),则sinα的值为(  )
A.$\frac{3\sqrt{10}}{10}$B.-$\frac{\sqrt{10}}{10}$C.±$\frac{3\sqrt{10}}{10}$D.±$\frac{\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{{{b^2}-{a^2}-{c^2}}}{ac}$=$\frac{{cos({A+C})}}{sinAcosA}$.
(1)求角A;
(2)若a=$\sqrt{2}$,求bc的取值范围.

查看答案和解析>>

同步练习册答案