分析 (1)求出函数的导数,计算h′(1),h(1),代入切线方程即可;
(2)令m(x)=f(x)-g(x),求出m(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出m(x)≤0,证出结论即可.
解答 解:(1)h(x)=$\frac{1}{2}$+lnx+$\frac{1}{2}$x2,
∴h′(x)=$\frac{1{+x}^{2}}{x}$,(x>0),
∴k=h′(1)=2,h(1)=1,
切线方程是:y-1=2(x-1),
即2x-y-1=0;
(2)证明:令m(x)=f(x)-g(x)=$\frac{1}{2}$+lnx-$\frac{1}{2}$x2,
则m′(x)=$\frac{1{-x}^{2}}{x}$,(x>0),
令m′(x)>0,解得:0<x<1,
令m′(x)<0,解得:x>1,
∴m(x)在(0,1)递增,在(1,+∞)递减,
∴m(x)max=m(1)=0,
故f(x)≤g(x).
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{6}$或$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 无最大值 | |
| B. | 极大值为2 | |
| C. | 极小值为$\frac{2e}{3}$ | |
| D. | 函数g(x)=f(x)-2的图象与x轴只有两个交点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10+5$\sqrt{3}$ | B. | 15 | C. | 10+2$\sqrt{3}$ | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ac-bd=0 | B. | ad+bc=0 | ||
| C. | ac-bd≠0且ad+bc=0 | D. | ac-bd=0且ad+bc≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com