精英家教网 > 高中数学 > 题目详情
问题:①有1000盒生产批次不同的药品,第一批500盒,第二批200盒,第三批300盒,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:1.简单随机抽样法;2.系统抽样法;3.分层抽样法.其中问题与方法的最佳配对是(  )
A、①1,②2
B、①3,②1
C、①2,②3
D、①3,②2
考点:收集数据的方法
专题:概率与统计
分析:简单随机抽样是从总体中逐个抽取;系统抽样是事先按照一定规则分成几部分;分层抽样是将总体分成几层,再抽取.
解答: 解:①1000盒生产批次不同的药品,第一批500盒,第二批200盒,第三批300盒,
∵总体的个体差异较大,∴适合采用分层抽样;
②从20名学生中选出3名参加座谈会,∵总体个数较少,∴可采用抽签法.
综上知,问题与方法能配对的是①3,②1.
故选B.
点评:抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,
若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a3a7=-16,a4+a6=0.
(1)求an
(2)若等差数列{an}为递增数列,设bn=(an+10)•2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

P是双曲线
x2
9
-
y2
16
=1的右支上一点,F1、F2分别为左、右焦点,则△PF1F2内切圆圆心的横坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则它的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若动点P与定点F(1,1)的距离和动点P与直线l:3x+y-4=0的距离相等,则动点P的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为(  )
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

动圆M过定点A且与定圆O相切,那么动圆M的圆心的轨迹是(  )
A、圆,或椭圆
B、圆,或双曲线
C、椭圆,或双曲线,或直线
D、圆,或椭圆,或双曲线,或直线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1:x2+y2-2x=0和曲线C2:y=xcoxθ-1(θ为锐角),则C1与C2的位置关系为(  )
A、相切B、相交
C、相离D、以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点(1,1),交x轴,y轴的正半轴分别于A,B,过A,B作直线3x+y+3=0的垂线,垂足分别为C,D.
(1)当AB∥CD时,求CD中点M的坐标;
(2)当|CD|最小时,求直线l的方程.

查看答案和解析>>

同步练习册答案