精英家教网 > 高中数学 > 题目详情
(2013•梅州二模)如图,侧棱垂直底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0).
(Ⅰ)当AA1=AB=AC时,求证:A1C⊥平面ABC1
(Ⅱ)若二面角A-BC1-C的平面角的余弦值为
10
10
,试求实数t的值.
分析:(Ⅰ)以AB,AC,AA1所在直线为x,y,z轴建立空间直角坐标系,利用向量的数量积证明
A1C
AC1
A1C
AB
,从而可知A1C⊥平面ABC1
(Ⅱ)求出平面ABC1的法向量
n
=(0,2t-3,t)、平面BCC1的法向量
m
=(1,1,0),利用向量的夹角公式,建立方程,即可求得结论.
解答:(Ⅰ)证明:∵AA1⊥面ABC,∴AA1⊥AC,AA1⊥AB.
又∵AB⊥AC,∴分别以AB,AC,AA1所在直线为x,y,z轴建立空间直角坐标系.…(1分)
则A(0,0,0),C1(0,1,1),B(1,0,0),C(0,1,0),A1(0,0,1),
A1C
=(0,1,-1),
AC1
=(0,1,1),
AB
=(1,0,0)

A1C
AC1
=0
A1C
AB
=0
,…(2分)
A1C
AC1
A1C
AB
.…(3分)
又∵AC1∩AB=A
∴A1C⊥平面ABC1.…(4分)
(Ⅱ)解:分别以AB,AC,AA1所在直线为x,y,z轴建立空间直角坐标系.
则A(0,0,0),C1(0,t,3-2t),B(t,0,0),C(0,t,0),A1(0,0,3-2t),
A1C
=(0,2,2t-3),
AC1
=(0,t,3-2t),
AB
=(t,0,0)
CC1
=(0,0,3-2t)
BC
=(-t,t,0)
.…(6分)
设平面ABC1的法向量
n
=(x,y,z),
ty+(3-2t)z=0
tx=0
,令z=t,则
n
=(0,2t-3,t).…(8分)
同理可求平面BCC1的法向量
m
=(1,1,0).…(10分)
设二面角A-BC1-C的平面角为θ,
则有|cosθ|=|
n
m
|
n
||
m
|
|=
|2t-3|
2
×
t2+(2t-3)2
=
10
10

化简得5t2-16t+12=0,解得t=2(舍去)或t=
6
5

所以当t=
6
5
时,二面角A-BC1-C的平面角的余弦值为
10
10
.…(12分)
点评:本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想及应用意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•梅州二模)有甲乙两个班进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下列联表.
优秀 非优秀 总计
甲班 10
乙班 30
合计 105
已知在全部105人中随机抽取1人为优秀的概率为
2
7

(1)请完成上面的联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班10优秀的学生按2到11进行编号,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号.试求抽到6号或10号的概率.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
概率表
P(K2≥k0 0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州二模)已知函数f(x)=
lnx
x
的图象为曲线C,函数g(x)=
1
2
ax+b的图象为直线l.
(1)当a=2,b=-3时,求F(x)=f(x)-g(x)的最大值;
(2)设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州二模)sin660°的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州二模)已知min{a,b}=
a
b
(a≤b),
(a>b)
,设f(x)=min{x3
1
x
}
,则由函数f(x)的图象与x轴、直线x=e所围成的封闭图形的面积为
5
4
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州二模)某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.

查看答案和解析>>

同步练习册答案