精英家教网 > 高中数学 > 题目详情
6.设F1,F2为椭圆$\frac{x^2}{25}+\frac{y^2}{16}$=1的焦点,P为椭圆上的一点,且∠F1PF2=60°,则△PF1F2的面积为3 $\sqrt{3}$.

分析 利用椭圆定义求出|PF1|+|PF2|和|F1F2|的值,通过余弦定理求出|PF1||PF2|的值,再代入三角形的面积公式即可.

解答 解:由椭圆$\frac{x^2}{25}+\frac{y^2}{16}$=1方程可知,
a=5,b=3,
∴c=4
∵P点在椭圆上,F1、F2为椭圆的左右焦点,
∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8
在△PF1F2中,
cos∠F1PF2=$\frac{|{PF}_{1}{|}^{2}+|{PF}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2\left|{PF}_{1}\right|\left|{PF}_{2}\right|}$
=$\frac{(\right|{PF}_{1}{|}^{\;}+|{PF}_{2}{\left|)}^{2}-2\left|{PF}_{1}\right|\left|{PF}_{2}\right|-|{F}_{1}{F}_{2}{|}^{2}}{2\left|{PF}_{1}\right|\left|{PF}_{2}\right|}$
=$\frac{100-2\left|{PF}_{1}\right|\left|{PF}_{2}\right|-64}{2\left|{PF}_{1}\right|\left|{PF}_{2}\right|}$
=cos60°=$\frac{1}{2}$,
∴72-4|PF1||PF2|=2|PF1||PF2|,
∴|PF1||PF2|=12,
又∵在△F1PF2中,
△PF1F2的面积S=$\frac{1}{2}$|PF1||PF2|sin∠F1PF2
∴S=$\frac{1}{2}$×12sin60°=3 $\sqrt{3}$;
故答案为:3 $\sqrt{3}$.

点评 本题主要考查椭圆中焦点三角形的面积的求法,关键是应用椭圆的定义和余弦定理转化,考查计算能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设定义域为R+的函数f(x),对任意的正实数x,y,都有f(xy)=f(x)+f(y),且当x>1时有f(x)>0.
①求f(1)的值;
②判断f(x)在(0,+∞)上的单调性,并证明.
③若f($\frac{1}{a}$)=-1,求满足不等式f(1-x)<1的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知扇形OAB的圆心角α为120°,半径长为6,则$\widehat{AB}$的弧长为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}中,若-2<a2<2,1<a5<8,则S7的取值范围是($\frac{21}{4}$,42).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A、B的坐标分别是(-4,2),(3,1),则点C的坐标为(  )
A.(-2,4)B.(-2,-4)C.(2,4)D.(2,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=8,则动点M的轨迹是(  )
A.椭圆B.双曲线C.线段D.两条射线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2sin(3x-$\frac{π}{3}$),x∈R.
(1)用五点法作出该函数在长度为一个周期上的简图;
(2)求函数f(x)的单调区间和对称轴方程;
(3)写出使得不等式f(x)≥$\sqrt{3}$成立的x值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知二项式($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)n的各项二项式系数之和为32,则该二项展开式的常数项为(  )
A.10B.-10C.5D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是①③④(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点;
②如果k与b都是无理数,则直线y=kx+b不经过任何整点;
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点;
④存在恰经过一个整点的直线.

查看答案和解析>>

同步练习册答案