精英家教网 > 高中数学 > 题目详情
14.函数f(x)=log${\;}_{\frac{1}{3}}$(9-x2)的单调增区间为[0,3).

分析 令t=9-x2>0,求得函数的定义域为(-3,3),由y=log${\;}_{\frac{1}{3}}$t为减函数,故复合函数的单调递增区间,即为内函数的单调递减区间.

解答 解:令t=9-x2>0,求得-3<x<3,故函数的定义域为(-3,3),
则y=log${\;}_{\frac{1}{3}}$t,
∵y=log${\;}_{\frac{1}{3}}$t为减函数,
t=9-x2在(-3,0]上为增函数,在[0,3)上为减函数,
故函数f(x)=log${\;}_{\frac{1}{3}}$(9-x2)的单调增区间为[0,3),
故答案为:[0,3)

点评 本题主要考查对数函数、二次函数的性质,复合函数的单调性,体现了转化的数学思想,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,….
(1)求a1,a2
(2)计算S1、S2,猜想数列{Sn}的通项公式,并用数学归纳法予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,圆柱底面直径为10,母线BB1=6,矩形ABCD内接于圆柱的下底面,BC=6,求直线DB1与BC所成角的大小.(结果用反三角函教值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,四边形ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,平面 PAD⊥平面ABCD.
(1)求证:PA⊥平面ABCD:
(2)若平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若f(x)=x2-x+b,且f(log2a)=b,log2|f(a)|=2(a≠1),当满足log2(2-x)≤2时,求f(2x)的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=loga(2-ax)在区间[1,3]上是增函数,则实数a的取值范围是0<a<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ex-ax-1(a∈R).
(1)求函数f(x)的单调区间;
(2)函数F(x)=f(x)-xlnx在定义域内存在零点,求a的取值范围;
(3)若g(x)=ln(ex-1)-lnx,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设点A(x0,y0)是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上的定点(x0≠±a)…又E,F是C上的两个动点直线AE,AF的斜率互为相反数.证明:直线EF的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在直角坐标系内,点A(x,y)实施变换f后,对应点为A1(y,x),给出以下命题:
①圆x2+y2=r2(r≠0)上任意一点实施变换f后,对应点的轨迹仍是圆x2+y2=r2(r≠0);
②若直线y=kx+b上每一点实施变换f后,对应点的轨迹方程仍是y=kx+b,则k=-1;
③椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上每一点实施变换f后,对应点的轨迹仍是离心率不变的椭圆;
④曲线C:y=-x2+2x-1(x>0)上每一点实施变换f后,对应点的轨迹是曲线C1,M是曲线C上的任意一点,N是曲线C1上的任意一点,则|MN|的最小值为$\frac{{3\sqrt{2}}}{4}$.
以上正确命题的序号是①③④(写出全部正确命题的序号).

查看答案和解析>>

同步练习册答案