精英家教网 > 高中数学 > 题目详情
16.z∈C,若|z|-$\overline{z}$=1+2i,则$\frac{z}{1+i}$等于(  )
A.$\frac{7}{4}+\frac{1}{4}$iB.$\frac{7}{4}-\frac{1}{4}$iC.-$\frac{1}{4}-\frac{1}{4}$iD.-$\frac{1}{4}+\frac{1}{4}$i

分析 设z=a+bi,得到$\sqrt{{a}^{2}{+b}^{2}}$-a=1,b=2,从而求出z,求出$\frac{z}{1+i}$即可.

解答 解:设z=a+bi,
若|z|-$\overline{z}$=1+2i,
则$\sqrt{{a}^{2}{+b}^{2}}$-(a-bi)=1+2i,
∴$\sqrt{{a}^{2}{+b}^{2}}$-a=1,b=2,
故a=$\frac{3}{2}$,
故a=$\frac{3}{2}$+2i,
故$\frac{z}{1+i}$=$\frac{(\frac{3}{2}+2i)(1-i)}{(1+i)(1-i)}$=$\frac{\frac{3}{2}+2+(2-\frac{3}{2})i}{2}$=$\frac{7}{4}$+$\frac{1}{4}$i,
故选:A.

点评 本题考查了复数的运算,复数的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{a}$,$\overrightarrow{b}$是任意两个向量,下列条件:①$\overrightarrow{a}$=$\overrightarrow{b}$;②|$\overrightarrow{a}$|=|$\overrightarrow{b}$|;③$\overrightarrow{a}$与$\overrightarrow{b}$的方向相反;④$\overrightarrow{a}$=0或$\overrightarrow{b}$=0;⑤$\overrightarrow{a}$与$\overrightarrow{b}$都是单位向量.其中,使向量$\overrightarrow{a}$与$\overrightarrow{b}$平行的有①③④(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=x4-3x3+1,则f′(x)=(  )
A.4x3-6x2B.4x3-9x2C.4x3+6x2D.4x3-6x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=2x2+ex-$\frac{1}{3}$(x<0)与g(x)=2x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是a<e${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线y=$\frac{1}{3}{x^3}$+x-$\frac{1}{3}$在点(1,1)处的切线与坐标轴围成的三角形面积为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将函数f(x)=$\sqrt{3}$sin2x-cos2x的图象向右平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(3-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,则f(-1)+f(log26)=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对任意k∈R,直线y=klog2x-2总过一个定点,该定点坐标为(  )
A.(1,-2)B.(-1,2)C.(2,-1)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$,m,n∈R,则(m-2)2+(n-2)2的取值范围是$(\frac{9}{2},8)$.

查看答案和解析>>

同步练习册答案