精英家教网 > 高中数学 > 题目详情
5.对任意k∈R,直线y=klog2x-2总过一个定点,该定点坐标为(  )
A.(1,-2)B.(-1,2)C.(2,-1)D.(-2,-1)

分析 令k的系数log2x=0,求得x、y的值,可得直线y=klog2x-2经过定点的坐标.

解答 解:对于直线y=klog2x-2,令k的系数log2x=0,求得x=1,y=-2,
可得直线y=klog2x-2总过一个定点(1,-2),
故选:A.

点评 本题主要考查对数函数的单调性和特殊点,直线经过定点问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.两直线x+y-5=0和直x-y=0的交点坐标为$(\frac{5}{2},\frac{5}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.z∈C,若|z|-$\overline{z}$=1+2i,则$\frac{z}{1+i}$等于(  )
A.$\frac{7}{4}+\frac{1}{4}$iB.$\frac{7}{4}-\frac{1}{4}$iC.-$\frac{1}{4}-\frac{1}{4}$iD.-$\frac{1}{4}+\frac{1}{4}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若复数z1=3+4i,z2=a+i,且z1•$\overline{{z}_{2}}$是实数(其中$\overline{{z}_{2}}$为z2的共轭复数),则实数a=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a+b>0,比较$\frac{a}{{b}^{2}}$+$\frac{b}{{a}^{2}}$与$\frac{1}{a}$+$\frac{1}{b}$的大小.并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列四个命题:
①直线l平行于平面α内的无数直线,则l∥α
②若直线l在平面α外,则l∥α
③若直线l∥b,直线b?α,则l∥α
④若直线l∥b,直线b?α,那么直线l就平行平面α内的无数条直线
以上说法正确的是④.(将正确说法的序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=bn•2n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>2,函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+x-3(x>0)}\\{x-(\frac{1}{a})^{x}+3(x≤0)}\end{array}\right.$,若f(x)有两个零点分别为x1,x2,则(  )
A.?a>2,1<x1+x2<2B.?a>2,x1+x2=1C.?a>2,|x1-x2|=2D.?a>2,|x1-x2|=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于点C、D的点,AE=3,圆O的直径为9.
(1)求证:平面ABCD⊥平面ADE;
(2)求DE的长.

查看答案和解析>>

同步练习册答案