精英家教网 > 高中数学 > 题目详情
6.已知点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$,m,n∈R,则(m-2)2+(n-2)2的取值范围是$(\frac{9}{2},8)$.

分析 由题意可知m>0,n>0,m+n<1,画出可行域(m-2)2+(n-2)2表示点C(2,2)到可行域内点(m,n)距离平方,利用点到直线的距离公式,即可求得(m-2)2+(n-2)2的取值范围.

解答 解:由题意得:m>0,n>0,m+n<1,可行域为一个直角三角形OAB内部,其中A(1,0),B(0,1),
而(m-2)2+(n-2)2表示点C(2,2)到可行域内点(m,n)距离平方,
则C(2,2)到直线m+n=1距离为d$\frac{丨2+2-1丨}{\sqrt{2}}$=$\frac{3}{\sqrt{2}}$,
因此取值范围是(d,丨OC丨2),
∴(m-2)2+(n-2)2的取值范围$(\frac{9}{2},8)$,
故答案为:$(\frac{9}{2},8)$.

点评 本题考查向量的共面的性质,考查性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.z∈C,若|z|-$\overline{z}$=1+2i,则$\frac{z}{1+i}$等于(  )
A.$\frac{7}{4}+\frac{1}{4}$iB.$\frac{7}{4}-\frac{1}{4}$iC.-$\frac{1}{4}-\frac{1}{4}$iD.-$\frac{1}{4}+\frac{1}{4}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=bn•2n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>2,函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+x-3(x>0)}\\{x-(\frac{1}{a})^{x}+3(x≤0)}\end{array}\right.$,若f(x)有两个零点分别为x1,x2,则(  )
A.?a>2,1<x1+x2<2B.?a>2,x1+x2=1C.?a>2,|x1-x2|=2D.?a>2,|x1-x2|=3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在三角形ABC中,内角A,B,C满足cos2B-cos2C-sin2A=sinAsinB,则C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=x2-2bx+c在[1,+∞)上为增函数,则b的取值范围是(  )
A.b≥1B.b≤1C.b≥-1D.b≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.P(cosθ,2tanθ)位于第三象限,则么角θ所在象限是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于点C、D的点,AE=3,圆O的直径为9.
(1)求证:平面ABCD⊥平面ADE;
(2)求DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C1:x2+y2+6x=0关于直线l1:y=2x+1对称的圆为C.
(1)求圆C的方程;
(2)过点(-1,0)作直线l与圆C交于A,B两点,O是坐标原点,是否存在这样的直线l,使得OA⊥OB.若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案