精英家教网 > 高中数学 > 题目详情
1.在三角形ABC中,内角A,B,C满足cos2B-cos2C-sin2A=sinAsinB,则C=$\frac{π}{3}$.

分析 利用平方关系转化cos2B-cos2C-sin2A=sinAsinB,再根据正弦、余弦定理求出cosC的值,从而求出C的值.

解答 解:△ABC中,cos2B-cos2C-sin2A=sinAsinB,
∴(1-sin2B)-(1-sin2C)-sin2A=sinAsinB,
∴sin2C-sin2B-sin2A=sinAsinB,
由正弦定理得:a2+b2-c2=ab,
由余弦定理得:cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{ab}{2ab}$=$\frac{1}{2}$,
又C∈(0,π),
∴C=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题考查了正弦、余弦定理的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.曲线y=$\frac{1}{3}{x^3}$+x-$\frac{1}{3}$在点(1,1)处的切线与坐标轴围成的三角形面积为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.y=4cosx-e|x|图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数$f(x)={cos^2}(ωx-\frac{π}{6})-{cos^2}ωx$,其中ω>0,它的最小正周期π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)将y=f(x)的图象先向右平移$\frac{π}{4}$个单位,再将图象上所有点的横坐标变为原来的$\frac{1}{2}$,纵坐标变为原来的2倍,所得到的图象对应的函数记为g(x),求g(x)在区间$[{-\frac{π}{24},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xoy中,圆的参数方程为$\left\{\begin{array}{l}x=2+cosφ\\ y=2\sqrt{3}+sinφ\end{array}\right.$(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为$\sqrt{3}ρcosθ+3ρsinθ+4\sqrt{3}=0$.
(1)将圆的参数方程化为普通方程,在化为极坐标方程;
(2)若点P在直线l上,当点P到圆的距离最小时,求点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$,m,n∈R,则(m-2)2+(n-2)2的取值范围是$(\frac{9}{2},8)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足x2+(y-2)2=1,则$\frac{x+\sqrt{3}y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范围是(  )
A.($\sqrt{3}$,2]B.[1,2]C.(0,2]D.($\frac{\sqrt{3}}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2),a1=$\frac{1}{2}$,则Sn=$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在正方体ABCD-A1B1C1D1中,E、F分别为棱BB1和DD1的中点,M为棱DC的中点.
(1)求证:平面FB1C1∥平面ADE;
(2)求证:D1M⊥平面ADE;
(3)求二面角A1-DE-A的余弦值.

查看答案和解析>>

同步练习册答案