精英家教网 > 高中数学 > 题目详情
11.在正方体ABCD-A1B1C1D1中,E、F分别为棱BB1和DD1的中点,M为棱DC的中点.
(1)求证:平面FB1C1∥平面ADE;
(2)求证:D1M⊥平面ADE;
(3)求二面角A1-DE-A的余弦值.

分析 (1)只需证得FDEB1为平行四边形,即可得D1E∥BF.平面FB1C1∥平面ADE
(2)建立如图所示坐标系,正方体棱长为2,则A(2,0,0),D(0,0,0),C(0,2,0),D1(0,0,2),M(0,1,0),E(2,2,1),利用向量法求二面角的余弦值

解答 证明:(1)∵AD∥B1C1又B1E∥DF且B1E=DF
∴FDEB1为平行四边形∴D1E∥BF.
又B1F∩B1C1=B1,DE∩AD=D
∴平面FB1C1∥平面ADE
(2)建立如图所示坐标系,正方体棱长为2.
A(2,0,0)D(0,0,0)C(0,2,0)D1(0,0,2)∴M(0,1,0)E(2,2,1)
既$\overrightarrow{{D}_{1}M}=(0,1,-2)$,$\overrightarrow{DE}=(2,2,1)$,$\overrightarrow{DA}=(2,0,0)$   
∵$\overrightarrow{{D}_{1}M}•\overrightarrow{DE}=0$,$\overrightarrow{{D}_{1}M}•\overrightarrow{DA}=0$,∴D1M⊥DE,D1M⊥DA
∴D1M⊥平面ADE;
(3)∵$\overrightarrow{D{A}_{1}}=(2,0,2)$,$\overrightarrow{DE}=(2,2,0)$
设平面A1DE的法向量$\overrightarrow{n}=(1,{y}_{0},{x}_{0})$
∵$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=2{y}_{0}+2{z}_{0}=0}\\{\overrightarrow{n}•\overrightarrow{DE}=2+2{y}_{0}+{z}_{0}=0}\end{array}\right.$,可取$\overrightarrow{n}=(1,-\frac{1}{2},-1)$
而平面ADE的法向量为$\overrightarrow{{D}_{1}M}=(0,1,-2)$
∴$cos<\overrightarrow{n},\overrightarrow{{D}_{1}M}>$=$\frac{\overrightarrow{n}•\overrightarrow{{D}_{1}M}}{|\overrightarrow{n}||\overrightarrow{{D}_{1}M}|}$=$\frac{\sqrt{5}}{5}$
即二面角的余弦值为$\frac{\sqrt{5}}{5}$

点评 本题考查了空间面面平行的判定,向量法求面面角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在三角形ABC中,内角A,B,C满足cos2B-cos2C-sin2A=sinAsinB,则C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,a1=1且an+1=2Sn+1(n∈N*);
数列{bn}中,b1=3且对n∈N*,点(bn,bn+1)都在函数y=x+2的图象上.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)是否存在正整数n,使得a1b1+a2b2+…+anbn>100n?若存在,求n的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知椭圆方程为$\frac{x^2}{4}+\frac{y^2}{3}$=1,点$P(0,\sqrt{3})$.
i.若关于原点对称的两点A1(-2,0),B1(2,0),记直线PA1,PB1的斜率分别为${k_{P{A_1}}},{k_{P{B_1}}}$,试计算${k_{P{A_1}}}•{k_{P{B_1}}}$的值;
ii.若关于原点对称的两点${A_2}(\sqrt{3},\frac{{\sqrt{3}}}{2}),{B_2}(-\sqrt{3},-\frac{{\sqrt{3}}}{2})$,记直线PA2,PB2的斜率分别为${k_{P{A_2}}},{k_{P{B_2}}}$,试计算${k_{P{A_2}}}•{k_{P{B_2}}}$的值;
(2)根据上题结论探究:若M,N是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM,QN的斜率都存在,并分别记为kQM,kQN,试猜想kQM•kQN的值,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n和为Sn,公差d≠0.且a3+S5=42,a1,a4,a13成等比数列
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若Sn表示数列{an}的前n项和,求数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C1:x2+y2+6x=0关于直线l1:y=2x+1对称的圆为C.
(1)求圆C的方程;
(2)过点(-1,0)作直线l与圆C交于A,B两点,O是坐标原点,是否存在这样的直线l,使得OA⊥OB.若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若tanα=4的值,则$\frac{{sin(π-α)-sin(\frac{π}{2}+α)}}{cos(-α)}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如2x+2-x=5,求4x+$\frac{1}{{4}^{x}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.将(ax2+bx)7的展开式按x的次数由大到小的顺序排列,首尾两项的系数之比为128,中间两项的系数之和为840.
(Ⅰ)求实数a,b的值;
(Ⅱ)求(ax2+bx)7•x-10展开式中的常数项.

查看答案和解析>>

同步练习册答案