精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和为Sn,a1=1且an+1=2Sn+1(n∈N*);
数列{bn}中,b1=3且对n∈N*,点(bn,bn+1)都在函数y=x+2的图象上.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)是否存在正整数n,使得a1b1+a2b2+…+anbn>100n?若存在,求n的最小值;若不存在,请说明理由.

分析 (Ⅰ)由an+1=2Sn+1(n∈N*),an=2Sn-1+1(n∈N*)得an+1-an=2a_n,}an+1=3an,即$\frac{{a}_{n+1}}{{a}_{n}}=3,(n≥2)$
由点(bn,bn+1)都在函数y=x+2的图象上.得数列 {bn}是公差为2的等差数列
(Ⅱ)设数列{an•bn}的前n项和为Tn,an•bn=(2n+1)3n-1
利用错位相减法求得Tn,由题意n•3n>100,得n≥5

解答 解:(Ⅰ)当n=1时,a2=2s1+1=3…(1分)
且an+1=2Sn+1(n∈N*);          ①
∴当n≥2时,an=2Sn-1+1(n∈N*);   ②…(2分)
①-②得an+1-an=2a_n,}an+1=3an
即$\frac{{a}_{n+1}}{{a}_{n}}=3,(n≥2)$
又当n=1时,$\frac{{a}_{2}}{{a}_{1}}=3$也符合$\frac{{a}_{n+1}}{{a}_{n}}=3$
所以数列{an}是首项为1,公比为3的等比数列,${a}_{n}={3}^{n-1}$…(4分)
∵点(bn,bn+1)都在函数y=x+2的图象上∴bn+1=bn+2,bn+1-bn=2.
所以数列 {bn}是公差为2的等差数列,
bn=3+(n-1)×2=2n+1…(6分)
(Ⅱ)设数列{an•bn}的前n项和为Tn,∵an•bn=(2n+1)3n-1…(7分)
∴Tn=3•30+5•31+7•32+…+(2n-1)•3n-2+(2n+1)•3n-1…①
3Tn=3•31+5•32+7•33+…+(2n-1)3n-1+(2n+1)3n…②…(8分)
①-②得:-2Tn=3+2(31+32+33+…+3n-1)-(2n-1)•3n=-2n•3n
∴${T}_{n}=n•{3}^{n}$…(10分)
由题意n•3n>100n,即3n>100,∴n≥5
使得a1b1+a2b2+…+anbn>100n?若存在,n的最小值为5,…(12分)

点评 本题考查了数列的递推式,数列的通项公式,考查了错位相减法求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.y=4cosx-e|x|图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足x2+(y-2)2=1,则$\frac{x+\sqrt{3}y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范围是(  )
A.($\sqrt{3}$,2]B.[1,2]C.(0,2]D.($\frac{\sqrt{3}}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2),a1=$\frac{1}{2}$,则Sn=$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.圆的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数,0≤θ<2π),若Q(-2,2$\sqrt{3}$)是圆上一点,则对应的参数θ的值是(  )
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{4}{3}$πD.$\frac{5}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$y=\sqrt{{{log}_{\frac{1}{2}}}({x^2}-2)}$的定义域是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.[-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$)C.[-3,-1)∪(1,3]D.[-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列$\frac{1}{2},\frac{1}{6},\frac{1}{12},\frac{1}{20},…$的一个通项公式是(  )
A.${a_n}=\frac{1}{n(n-1)}$B.${a_n}=\frac{1}{2n(2n-1)}$C.${a_n}=\frac{1}{n}-\frac{1}{n+1}$D.${a_n}=1-\frac{1}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在正方体ABCD-A1B1C1D1中,E、F分别为棱BB1和DD1的中点,M为棱DC的中点.
(1)求证:平面FB1C1∥平面ADE;
(2)求证:D1M⊥平面ADE;
(3)求二面角A1-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3+ax2+(a+6)x+1有极值,则a的取值范围是(  )
A.-1<a<2B.-3<a<6C.a<-3或a>6D.a<-1或a>2

查看答案和解析>>

同步练习册答案