精英家教网 > 高中数学 > 题目详情
17.圆的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数,0≤θ<2π),若Q(-2,2$\sqrt{3}$)是圆上一点,则对应的参数θ的值是(  )
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{4}{3}$πD.$\frac{5}{3}$π

分析 根据题意,由圆的参数方程以及点Q的坐标可得4cosθ=-2,4sinθ=2$\sqrt{3}$,解可得θ的值,即可得答案.

解答 解:根据题意,圆的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数,0≤θ<2π),
若Q(-2,2$\sqrt{3}$)是圆上一点,则有4cosθ=-2,4sinθ=2$\sqrt{3}$,
解可得cosθ=-$\frac{1}{2}$,sinθ=$\frac{\sqrt{3}}{2}$,
则θ=$\frac{2π}{3}$;
故选:B.

点评 本题考查圆的参数方程,关键是掌握参数方程的定义以及表示方法,其次注意参数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.有3名男生,4名女生,在下列不同要求下,求不同的排列方法种数:
(1)选其中5人排成一排
(2)全体排成一排,甲不站在排头也不站在排尾
(3)全体排成一排,男生互不相邻
(4)全体排成一排,甲、乙两人中间恰好有3人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC的三个顶点A,B,C及△ABC所在平面内一点G,若$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$,且实数λ满足$\overrightarrow{AB}+\overrightarrow{AC}=λ\overrightarrow{AG}$,则λ=(  )
A.$\frac{3}{2}$B.3C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有一段演绎推理是这样的:“直线平行于平面,则此直线平行于平面内的所有直线;已知直线b∥平面α,直线a?平面α,则直线b∥直线a”.结论显然是错误的,这是因为(1).
(1)大前提错误    (2)推理形式错误     (3)小前提错误     (4)以上都错误.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直线l过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,a1=1且an+1=2Sn+1(n∈N*);
数列{bn}中,b1=3且对n∈N*,点(bn,bn+1)都在函数y=x+2的图象上.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)是否存在正整数n,使得a1b1+a2b2+…+anbn>100n?若存在,求n的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知关于x的不等式ax2+bx+c<0的解集是{x|x<-2,或x>-$\frac{1}{2}$},求不等式ax2-bx+c>0的解集.
(2)已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n和为Sn,公差d≠0.且a3+S5=42,a1,a4,a13成等比数列
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若Sn表示数列{an}的前n项和,求数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,若a4+a6+a8+a10+a12=90,则${a_{10}}-\frac{1}{3}{a_{14}}$的值为12.

查看答案和解析>>

同步练习册答案