| A. | $\frac{3}{2}$ | B. | 3 | C. | -1 | D. | 2 |
分析 根据向量平行四边形法则可知G是△ABC的重心,利用重心的性质即可得出答案.
解答
解:取AB的中点D,BC的中点E,
则$\overrightarrow{GA}+\overrightarrow{GB}$=2$\overrightarrow{GD}$,
∵$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$,∴$\overrightarrow{GC}$=-2$\overrightarrow{GD}$,
∴C,D,G三点共线,
同理A,G,E三点共线,
∴G是△ABC的重心,
∴AE=$\frac{3}{2}$AG,
∴$\overrightarrow{AB}+\overrightarrow{AC}$=2$\overrightarrow{AE}$=3$\overrightarrow{AG}$.
故选:B.
点评 本题考查了平面向量的线性运算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | $-\frac{1}{6}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{3}$,2] | B. | [1,2] | C. | (0,2] | D. | ($\frac{\sqrt{3}}{2}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{13}{14}$ | D. | $\frac{11}{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{2}{3}$π | C. | $\frac{4}{3}$π | D. | $\frac{5}{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com