精英家教网 > 高中数学 > 题目详情
19.若向量$\overrightarrow a=(-3,2)$,$\overrightarrow b=(-1,0)$,向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a-2\overrightarrow b$垂直,则λ等于(  )
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.$-\frac{1}{6}$D.$\frac{1}{6}$

分析 利用向量垂直与数量积的关系即可得出.

解答 解:向量$λ\overrightarrow a+\overrightarrow b$=(-3λ-1,2λ),$\overrightarrow a-2\overrightarrow b$=(-1,2),
∵向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a-2\overrightarrow b$垂直,∴($λ\overrightarrow a+\overrightarrow b$)•($\overrightarrow a-2\overrightarrow b$)=-(-3λ-1)+4λ=0,
解得λ=-$\frac{1}{7}$.
故选:A.

点评 本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.一汽车按s=3t2+1做运动,那么它在t=3s时的瞬时速度为18 m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合A={x|x(2-x)>0},B={x|x-1≥0},则集合A∪B=(  )
A.{x|1≤x<2}B.{x|x>2}C.{x|x≥1或x<0}D.{x|x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有3名男生,4名女生,在下列不同要求下,求不同的排列方法种数:
(1)选其中5人排成一排
(2)全体排成一排,甲不站在排头也不站在排尾
(3)全体排成一排,男生互不相邻
(4)全体排成一排,甲、乙两人中间恰好有3人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,且${a_n}=\frac{n}{n-1}{a_{n-1}}+2n•{3^{n-2}}({n≥2,n∈{N^*}})$.
(1)求a2,a3的值及数列{an}的通项公式;
(2)令${b_n}=\frac{{{3^{n-1}}}}{a_n}({n∈{N^*}})$,设数列{bn}的前n项和为Sn,求Sn并比较${S_{2^n}}$与n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)的图象如图所示,设f'(x)是f(x)的导函数,若0<a<b,下列各式成立的是(  )
A.$f'({\frac{2ab}{a+b}})<f'({\frac{a+b}{2}})<f'({\sqrt{ab}})$B.$f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})<f'({\frac{a+b}{2}})$
C.$f'({\frac{a+b}{2}})<f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})$D.$f'({\frac{a+b}{2}})<f'({\sqrt{ab}})<f'({\frac{2ab}{a+b}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知(x+$\frac{a}{x}$)n(n∈N,n>5)展开式的第5项是70,则展开式各项系数和是(  )
A.1B.-1C.28或0D.29或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC的三个顶点A,B,C及△ABC所在平面内一点G,若$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$,且实数λ满足$\overrightarrow{AB}+\overrightarrow{AC}=λ\overrightarrow{AG}$,则λ=(  )
A.$\frac{3}{2}$B.3C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知关于x的不等式ax2+bx+c<0的解集是{x|x<-2,或x>-$\frac{1}{2}$},求不等式ax2-bx+c>0的解集.
(2)已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.

查看答案和解析>>

同步练习册答案